Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hai trường hợp :
- Trường hợp a là độ dài một cạnh góc vuông .
Từ a2 + 82 = 152 ,ta có a2 = 161 . Ta thấy 122 < a2 < 132 nên a không là số tự nhiên
- Trường hợp a là độ dài cạnh huyền
Từ a2 = 82 + 152 = 289 = 172 ,ta được a = 17
Vậy a = 17
Nếu a là độ dài cạnh góc vuông áp dụng định lí Py-ta-go trong tam giác vuông ta có
a2+82=152 => a2=152-82=161
=> a=√161=12,68585.... mà a là số tự nhiên nên loại
Nếu a là độ dài cạnh huyền áp dụng định lí Py-ta-go trong tam giác vuông ta có
a2=82+152=64+225=289=172
vậy số a cần tìm là 17
Độ dài hai cạnh góc vuông lần lượt là \(8\)phần và \(15\)phần, thì độ dài cạnh huyền là: \(\sqrt{8^2+15^2}=17\)(phần)
Giá trị mỗi phần là \(34\div17=2\).
Độ dài cạnh góc vuông thứ nhất là: \(2.8=16\).
Độ dài cạnh góc vuông thứ hai là: \(2.15=30\).
Giả sử 15 là độ dài của cạnh dài huyền thì a2 + 82 = 152 (định lí Pi-ta-go)
a2 + 82 = 152
a2 + 64 = 225
a2 = 161
Không có số nào bình phương bằng 61 => 15 không phải là độ dài của cạnh huyền => a chính là cạnh huyền
Ta có:
82 + 152 = a2
64 + 225 = a2
289 = a2
=> a = 17
Vậy a = 17
Xét hai trường hợp:
- Trường hợp 1: a là độ dài một cạnh góc vuông.
Áp dụng định lí py- ta- go ta có:
a2 + 82 = 152
suy ra: a2 = 152 – 82 = 161 nên a = √161
(loại do a không là số tự nhiên)
-Trường hợp 2: a là độ dài cạnh huyền.
Áp dụng định lí Py- ta- go ta có:
a2 = 82 + 152 = 289 = 172, ta được a = 17 (thỏa mãn).
Vậy a = 17.