sao cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

\(ax^3+bx^2+c⋮x+2\)

\(\Rightarrow x=-2\) là nghiệm của pt \(ax^3+bx^2+c=0\)

\(\Rightarrow8a-4b-c=0\)

\(ax^3+bx^2+c\) chia \(x^2-1\) dư x+5

\(\Rightarrow ax^3+bx^2+c-x-5=0\)

\(\Leftrightarrow x=\pm1\)\(\Rightarrow\begin{cases}a+b+c=6\\-a+b+c=4\end{cases}\)

Ta có hpt \(\begin{cases}8a-4b-c=0\\a+b+c=6\\-a+b+c=4\end{cases}\)\(\Leftrightarrow\begin{cases}a=b=1\\c=4\end{cases}\)

 

 

 

26 tháng 10 2016

khó hiểu quá

bạn nói kĩ hơn đc ko?

14 tháng 1 2017

Ta có:

\(x^4+4=\left(x^4+4x^2+4\right)-4x^2\)

=\(\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)

=> \(x^4+4\) chia hết cho \(x^2+2x+a\) khi \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)⋮\left(x^2+2x+a\right)\)

=> a = 2.

8 tháng 11 2016

\(A=x^3+y^3+z^3+kxyz\)

Thực hiện phép chia ta được

\(A=\left(x^3+y^3+z^3+kxyz\right)\div\left(x+y+z\right)\)

\(A=\left(x+y+z\right)\left[x^2+y^2+z^2-xy-xz-yz-yz\left(k+2\right)\right]-yz\left(x+z\right)\left(k+3\right)\)

Để phép chia hết thì: \(yz\left(x+z\right)\left(k+3\right)=0\)

Suy ra: \(k+3=0\)
Suy ra: \(k=3\)

29 tháng 10 2016

k = -3

17 tháng 3 2017

Dễ thấy x=0 không là nghiệm của phương trình.

Xét x khác 0, chia cả 2 vế của phương trình cho \(x^2\ne0\) ta có:

\(x^2+\text{ax}+b+\dfrac{a}{x}+\dfrac{1}{x^2}=0\)

<=> \(\left(x^2+\dfrac{1}{x^2}\right)+a\left(x+\dfrac{1}{x}\right)+b=0\)

<=>\(\left(x+\dfrac{1}{x}\right)^2-2+a\left(a+\dfrac{1}{x}\right)+b=0\)(*)

Đặt \(y=x+\dfrac{1}{x}\)

Ta có: \(y^2-4=\left(x+\dfrac{1}{x}\right)^2-4=x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}-4.x.\dfrac{1}{x}\)

=\(x^2-2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=\left(x-\dfrac{1}{x}\right)^2\ge0\) với mọi x khác 0

=>\(y^2\ge4\)

=>\(\left|y\right|\ge2\)

(*) trở thành: y2-2+ay+b=0

<=>\(2-y^2=ay+b\)

=>\(\left|2-y^2\right|=\left|ay+b\right|\)(1)

Ta có: \(0\le\left(a-by\right)^2\) (với mọi \(a\ne0\) , b, \(\left|y\right|\ge2\))

<=>\(0\le a^2-2aby+b^2y^2\)

<=>\(a^2y^2+2aby+b^2\le a^2y^2+a^2+b^2y^2+b^2\)

<=>\(\left(ay+b\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)

<=>\(\left|ay+b\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)(2)

Từ (1) và (2) => \(\left|2-y^2\right|\le\sqrt{a^2+b^2}\sqrt{y^2+1}\)

<=>\(\left(2-y^2\right)^2\le\left(a^2+b^2\right)\left(y^2+1\right)\)

<=>\(\left(a^2+b^2\right)^2\ge\dfrac{\left(2-y^2\right)^2}{y^2+1}\)(3) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))

\(y^2\ge4\)

=> \(y^2-\dfrac{12}{5}\ge4-\dfrac{12}{5}=\dfrac{8}{5}\) > 0

=> \(\left(y^2-\dfrac{12}{5}\right)^2\ge\left(\dfrac{8}{5}\right)^2\)

<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{144}{25}\ge\dfrac{64}{25}\)

<=>\(y^4-\dfrac{24}{5}y^2+\dfrac{16}{5}\ge0\)

<=>\(5y^4-24y^2+16\ge0\)

<=>\(20-20y^2+5y^4\ge4y^2+4\)

<=>\(5\left(4-4y^2+y^4\right)\ge4\left(y^2+1\right)\)

<=>\(5\left(2-y^2\right)^2\ge4\left(y^2+1\right)\)

<=>\(\dfrac{\left(2-y^2\right)^2}{y^2+1}\ge\dfrac{4}{5}\) (4) (vì y2+1>0 với mọi \(\left|y\right|\ge2\))

Từ (3) và (4)=> \(a^2+b^2\ge\dfrac{4}{5}\)

Vậy giá trị nhỏ nhất của a2+b2\(\dfrac{4}{5}\) khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|y\right|=2\\a=by\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\\a=by\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\a=2b\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\a=-2b\end{matrix}\right.\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\a=-\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\end{matrix}\right.\)(I)

Vì a > 0 nên trường hợp thứ nhất loại.

Do đó:\(\left(I\right)\)<=>\(\left\{{}\begin{matrix}x=-1\\a=\dfrac{4}{5}\\b=\dfrac{-2}{5}\end{matrix}\right.\)

Khi đó giá trị của a cần tìm là \(\dfrac{4}{5}.\)

17 tháng 3 2017

0,8

16 tháng 3 2017

bài này ko cần giải a~

24 tháng 3 2017

Giải:

Từ \(\left(P\right)\)\(\left(d\right)\) ta có:

\(x^2=mx-m+1\)

\(\Leftrightarrow-x^2+mx-m+1=0\)

\(\Leftrightarrow\Delta=m^2-4m+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-m+\sqrt{m^2-4m+1}}{-2}\\x_2=\dfrac{-m-\sqrt{m^2-4m+1}}{-2}\end{matrix}\right.\)

\(x_1=2x_2\)

\(\Leftrightarrow\dfrac{-m+\sqrt{m^2-4m+1}}{-2}=\dfrac{-2m-2\sqrt{m^2-4m+1}}{-2}\)

Rút gọn đẳng thức trên ta thu được:

\(3\sqrt{m^2-4m+1}+m=0\)

Chuyển \(m\) sang vế phải và bình phương cả hai vế ta thu được:

\(9m^2-36m+9=m^2\)

\(\Leftrightarrow8m^2-36m+9=0\)

Giải phương trình ta thu được 2 nghiệm của \(m\)

Vậy \(m\) có hai phần tử

18 tháng 3 2017

\(x^2-\left(4m+1\right)x-4m-2=0\left(1\right)\)

pt (1) co \(\Delta=\left(4m+3\right)^2\ge0\) nên luôn có 2 nghiệm x1 ;x2

\(\left[{}\begin{matrix}x_1=4m+2\\x_2=-1\end{matrix}\right.\Rightarrow\left(-1\right)^5+\left(4m+3\right)^5=242\)

\(\Leftrightarrow\left(4m+3\right)^5=3^5\Rightarrow4m+3=3\)

​vậy m = 0

1 tháng 11 2016

a=-4x^2+25 với x>=-25/4

9 tháng 11 2016

sai oy ban à

19 tháng 2 2017

\(x^2-4x+1=0\)

\(\Rightarrow\left[\begin{matrix}x_1=2+\sqrt{3}\\x_2=2-\sqrt{3}\end{matrix}\right.\) (hai nghiệm của phương trình)

\(\rightarrow x_1^5+x_2^5=\left(2+\sqrt{3}\right)^5+\left(2-\sqrt{3}\right)^5=724\)

19 tháng 2 2017

moi lop 8 ma giai duoc toan lop 9 roi ???

bai phuc bai phuc

2 tháng 3 2017

Ta có :

\(2^{3x+2}=4^{x+5}\)

\(\Rightarrow2^{3x+2}=\left(2^2\right)^{x+5}\)

\(\Rightarrow2^{3x+2}=2^{2x+10}\)

\(\Rightarrow3x+2=2x+10\)

\(\Rightarrow3x-2x=10-2\)

\(\Rightarrow x=8\)

7 tháng 3 2017

Ta có: 2^3x+2=4^x+5

2^3x+2=2^(2x+5)

2^3x+2=2^2x+10

3x+2=2x+10

3x-2x=10-2

x=8

Vậy x=8

6 tháng 8 2016

\(\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)

\(=\sqrt{2}-\sqrt{3}-1-\sqrt{3}\)

\(=\sqrt{2}-1-2\sqrt{3}=a+b\sqrt{2}+c\sqrt{3}\) (*)

Nhìn vào (*) ta dễ dàng thấy

\(-2\sqrt{3}=c\sqrt{3}\rightarrow c=-2\)

\(\sqrt{2}=b\sqrt{2}\rightarrow b=1\)

Và a=-1.Suy ra a+b+c=(-2)+1+(-1)=-2