Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(25< 5^n< 625\)
\(\Leftrightarrow5^2< 5^n< 5^4\)
\(\Leftrightarrow2< x< 4\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
| x - 1 | + | x + 3 | = 3 ( * )
xét : x - 1 = 0 => x = 1
x + 3 = 0 => x = -3
x - 1 < 0 => x < 1
x + 3 < 0 => x < -3
x - 1 > 0 => x > 1
x + 3 > 0 => x > -3
Lập bảng xét dấu,ta có :
x -3 1
x+3 - 0 + | +
x-1 - | - 0 +
nếu x < -3 thì * <=> : ( 1 - x ) + ( -3 - x ) = 3
1 - x + ( -3 ) - x = 3
-2x = 5
x = -5/2 ( loại )
nếu -3 \(\le\)x < 1 thì * <=> : ( 1 - x ) + ( x + 3 ) = 3
1 - x + x + 3 = 3
0x = -1 ( ko có GT x thỏa mãn )
nếu x \(\ge\)1 thì * <=> : ( x -1 ) + ( x + 3 ) = 3
x - 1 + x + 3 = 3
2x = 1
x = 1/2 ( ko có GT x thỏa mãn )
Vậy ko có GT x nào thỏa mãn bài trên.
a) 25 < 5n:5 < 625
52 < 5n:5 < 54
2 < n:5 < 4
=> n : 5 = 3
=> n = 15
b) 34 < \(\frac{1}{9}.27^n\)< 310
34 < \(\frac{27^n}{9}\)< 310
34 < 33n-2 < 310
=> 3n - 2 \(\in\) { 5 ; 6 ; 7 ; 8 ; 9 }
Nếu 3n - 2 = 5 thì n = 7/3 ( loại )
Nếu 3n - 2 = 6 thì n = 8/3 ( loại )
Nếu 3n - 2 = 7 thì n = 3 ( thỏa mãn )
Nếu 3n - 2 = 8 thì n = 10/3 ( loại )
Nếu 3n - 2 = 9 thì n = 11/3 ( loại )
Vậy n = 3
1, 32 < 2^n < 128
2^5 < 2^n < 2^7
=> 5 < n < 7
Vì n là nguyên dương => n = 6
2, 2.16 > (=) 2^n > 4
2.2^4 > (=) 2^n > 2^2
2^5 > (=) 2^n > 2^2
5 >(=) n > 2 => n = 5 ; 4 ; 3
3, 9.27 < 3^n <= 243
3^2 . 3^3 < 3^n <= 3^5
3^5 < 3^n <=5
5 < n <= 5 ( không có n)
a,Ta có \(16<2^n\le2^3.32\)
<=>\(2^4<2^n\le2^3,2^5\)
<=> \(2^4<2^n\le2^8\)
<=> \(4 < n \le 8\)
=> \(n \in{5,6,7,8}\)
b, \(25<5^n<625\)
<=>\(5^2 < 5^n<5^4\)
<=> 2<n<4
=> n=3
\(a,2^3.32\ge2^n>16\)
\(2^3.2^5\ge2^n>2^4\)
\(2^8\ge2^n>2^4\)
\(\Rightarrow n\in\left\{8;7;6;5\right\}\)
\(b,25< 5^n< 625\)
\(5^2< 5^n< 5^4\)
\(\Rightarrow n=3\)
tìm số nguyên dương n, biết:
a) 25<5n<625
b)3.27>3nlớn hơn, bằng 9
c)16 bé hơn, bằng 8n bé hơn, bằng 64
a) \(25< 5^n< 625\)
\(25=5^2;625=5^4\)
=> \(5^2< 5^n< 5^4\)
=> 2 < n < 4
=> n = 3
b) \(9\le3^n< 3.27\)
\(9=3^2;3.27=3.3^3=3^4\)
=> \(3^2\le3^n< 3^4\)
=> n = 2; hoặc n = 3
c) \(16\le8^n\le64\)
\(16=8.2;64=8^2\)
=> \(8.2\le8^n\le8^2\)
=> n = 2
a. \(\Rightarrow5^{-1}.5^{2n}=5^3\)
\(\Rightarrow5^{2n-1}=5^3\)
=> 2n-1=3
=> 2n=4
=> n=2
b. \(\Rightarrow3^{n-1}+6.3^{n-1}=7.3^6\)
\(\Rightarrow\left(1+6\right).3^{n-1}=7.3^6\)
\(\Rightarrow7.3^{n-1}=7.3^6\)
=> n-1=6
=> n=7
c. \(\Rightarrow3^4<3^{-2}.3^{3n}<3^{10}\)
\(\Rightarrow3^4<3^{3n-2}<3^{10}\)
\(\Rightarrow3n-2\in\left\{5;6;7;8;9\right\}\)
\(\Rightarrow3n\in\left\{7;8;9;10;11\right\}\)
\(\text{Mà n là số nguyên}\Rightarrow n=3\).
d. \(\Rightarrow5^2<5^{n-1}<5^4\)
\(\Rightarrow n-1=3\)
\(\Rightarrow n=4\).
Bài 1 :
a) x < 0
b) x > 0
c) <=> 3 + |3x - 1| = 5
<=> |3x - 1| = 5 - 3 = 2
<=> 3x - 1 = 2 hoặc -3x + 1 = 2
<=> 3 x = 3 hoặc -3x = 1
<=> x = 1 hoặc x = -1/3
Bài 2 :
a) 27 = 33 < 3n < 243 = 35
<=> 3 < n < 5
Vì n thuộc N* nên n thuộc {4; 5}
b) 32 = 25 < 2n < 128 = 27
<=> 5 < n < 7. Vì n thuộc N* nên n = 6
c) 125 = 5 . 25 = 5 . 52 < 5.5n < 5 . 125 = 5 . 53
<=> 2 < n < 3. Vì n thuộc N* nên n = 3
Từ đề bài suy ra 52 < 5n < 54, tìm được n = 3