K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

a) 5.(x^2-3x+1)+x.(1-5x)=x-2

\(\Leftrightarrow5x^2-15x+5+x-5x^2=x-2\)

\(\Leftrightarrow-14x-x=-2-5\)

\(\Leftrightarrow-15x=-7\)

\(\Leftrightarrow x=\frac{7}{15}\)

b\(,3x.\left(\frac{4}{3}+1\right)-4x\left(x-2\right)=10\)

\(\Leftrightarrow4x+3x-4x^2+8x-10=0\)

\(\Leftrightarrow-4x^2+15x-10=0\)

Đề sai???

\(c,12x^2-4x\left(3x-5\right)=10x-17\)

\(\Leftrightarrow12x^2-12x^2+20x-10x=-17\)

\(\Leftrightarrow10x=-17\)

\(\Leftrightarrow x=-\frac{17}{10}\)

\(d,4x\left(x-5\right)-7x\left(x-4\right)+3x^2=12\)

\(\Leftrightarrow4x^2-20x-7x^2+28x+3x^2=12\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\frac{3}{2}\)

23 tháng 7 2020

lộn câu d nha sửa lại:

d) 2x(x2 − 2) + x2(1 - 2x) - x2

=> 2x3 − 4x + x2 − 2x3 − x2 = −12

=> -4x = 12 => x = -3

16 tháng 12 2022

a: \(\Leftrightarrow4\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3x^2\)

\(\Leftrightarrow4\cdot\left[\left(x^2+60\right)^2+33x\left(x^2+60\right)+272x^2\right]=3x^2\)

=>4(x^2+60)^2+132x(x^2+60)+1085x^2=0

=>4(x^2+60)^2+62x(x^2+60)+70x(x^2+60)+1085x^2=0

=>2(x^2+60)(2x^2+120+31x)+35x(2x^2+120+31x)=0

=>(2x^2+120+35x)(2x^2+31x+120)=0

=>\(x\in\left\{\dfrac{-35\pm\sqrt{265}}{4};-\dfrac{15}{2};-8\right\}\)

b: Đặt x^2-3x=a

Phương trình sẽ là \(\dfrac{1}{a+3}+\dfrac{2}{a+4}=\dfrac{6}{a+5}\)

\(\Leftrightarrow\dfrac{a+4+2a+6}{\left(a+3\right)\left(a+4\right)}=\dfrac{6}{a+5}\)

=>(3a+10)(a+5)=6(a^2+7a+12)

=>6a^2+42a+72=3a^2+15a+10a+50

=>3a^2+17a+22=0

=>x=-2 hoặc x=-11/3

30 tháng 9 2020

Bài 1.

1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15

<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15

<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15

<=> 12x2 + 15 = 15

<=> 12x2 = 0

<=> x = 0

2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13

<=> x( x2 - 16 ) - ( x3 - 53 ) = 13

<=> x3 - 16x - x3 + 125 = 13

<=> 125 - 16x = 13

<=> 16x = 112

<=> x = 7

Bài 2.

A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )

= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x

= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x

= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )

B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x+ 3x( x - 1 )

= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x

= 7 ( đpcm )

C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15

= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15

= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15

= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]

= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )

= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )

= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )

= 64x3 - 16 + 704x3 + 528x2 + 180x + 23 

= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )

\(a,5\left(x^2-3x+1\right)+x\left(1-5x\right)=x-2\)

\(\Leftrightarrow5x^2-15x+5+x-5x^2-x+2=0\)

\(\Leftrightarrow-15x+7=0\)

\(\Leftrightarrow-15x=-7\)

\(\Leftrightarrow x=-\frac{7}{-15}\)

\(\Leftrightarrow x=\frac{7}{15}\)

18 tháng 9 2018

a) \(3\left(x^2-2x+1\right)+x\left(2-3x\right)=7\)

\(\Rightarrow3x^2-6x+3+2x-3x^2=7\)

\(\Rightarrow-4x+3=7\)

\(\Rightarrow-4x+3-7=0\)

\(\Rightarrow-4x-4=0\)

\(\Rightarrow-4\left(x+1\right)=0\)

\(\Rightarrow x+1=0\)

\(\Rightarrow x=-1\)

b) \(5\left(x-2\right)+2\left(x+3\right)=10\)

\(\Rightarrow5x-10+2x+6=10\)

\(\Rightarrow7x-4=10\)

\(\Rightarrow7x=10+4=14\)

\(\Rightarrow x=\dfrac{14}{7}=2\)

c) \(\left(x+1\right)\left(-3\right)+5\left(x-4\right)=-3\)

\(\Rightarrow-3x-3+5x-20=-3\)

\(\Rightarrow2x-23=-3\)

\(\Rightarrow2x=-3+23=20\)

\(\Rightarrow x=\dfrac{20}{2}=10\)

d) \(2\left(x-1\right)-x\left(3-x\right)=x^2\)

\(\Rightarrow2x-2-3x+x^2=x^2\)

\(\Rightarrow-x-2+x^2-x^2=0\)

\(\Rightarrow-x-2=0\)

\(\Rightarrow-x=2\)

\(\Rightarrow x=-2\)

đ) \(3x\left(x+5\right)-2\left(x+5\right)=3x^2\)

\(\Rightarrow3x^2+15x-2x-10=3x^2\)

\(\Rightarrow3x^2-3x^2+13x-10=0\)

\(\Rightarrow13x-10=0\)

\(\Rightarrow13x=10\)

\(\Rightarrow x=\dfrac{10}{13}\)

e) \(4x\left(x+2\right)+x\left(4-x\right)=3x^2+12\)

\(\Rightarrow4x^2+8x+4x-x^2=3x^2+12\)

\(\Rightarrow3x^2+12x=3x^2+12\)

\(\Rightarrow3x^2+12x-3x^2-12=0\)

\(\Rightarrow12\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

f) \(\dfrac{1}{3}x\left(3x+6\right)-x\left(x-5\right)=9\)

\(\Rightarrow x^2+2x-x^2+5x=9\)

\(\Rightarrow7x=9\)

\(\Rightarrow x=\dfrac{9}{7}\)

11 tháng 11 2020

a)(x+2).(x+3)-(x-2).(x+5)=10

  ( x^2 +3x+2x+6)-(x^2 +5x-2x-10)=10

 x^2 +3x+2x+6-x^2 -5x+2x+10-10=0

 2x+6=0

2x=-6

x=-3

3 tháng 7 2020

a) 4 ( x + 5 )( x + 6 )( x + 10 )( x + 12 ) = 3x2
Do x = 0 không là nghiệm pt nên chia 2 vế pt cho \(x^2\ne0\), ta được :

\(\frac{4}{x^2}\left(x^2+60+17x\right)\left(x^2+60+16x\right)=3\)

\(\Leftrightarrow4\left(x+\frac{60}{x}+17\right)\left(x+\frac{60}{x}+16\right)=3\)

Đến đây ta đặt  \(x+\frac{60}{x}+16=t\left(1\right)\)

Ta được :

\(4t\left(t+1\right)=3\Leftrightarrow4t^2+4t-3=0\Leftrightarrow\left(2t+3\right)\left(2t-1\right)=0\)

Từ đó ta lắp vào ( 1 ) tính được x