K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2015

2n + 3 chia hết cho n - 2

n - 2 chia hết cho n - 2

2(n-2) chia hết cho n - 2

2n - 4 chia hết cho n - 2

=> (2n + 3 - 2n + 4) chia hết cho n - 2

7 chia hết cho n - 2

n - 2 thuộc U(7) = {1;7}

n - 2 = 1 =>  n = 3

n - 2 = 7 => n = 9

b) Tương tự       

15 tháng 11 2015

2n + 3 chia hết cho n - 2

n - 2 chia hết cho n - 2

2(n-2) chia hết cho n - 2

2n - 4 chia hết cho n - 2

=> (2n + 3 - 2n + 4) chia hết cho n - 2

7 chia hết cho n - 2

n - 2 thuộc U(7) = {1;7}

n - 2 = 1 =>  n = 3

n - 2 = 7 => n = 9

b) Tương tự       

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

21 tháng 12 2020

biết rồi

21 tháng 11 2015

n + 11 chia hết cho 5 + n

n + 5 + 6 chia hết cho 5 + n

5 + n thuộc  U(6) = {-6;-3;-2;-1;1;2;3;6}

Mà n là số TN 

Vậy n = 1

Tương tự

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

2 tháng 2 2019

\(a)n+7⋮n+2\)

\(\Rightarrow n+2+5⋮n+2\)

Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)

Lập bảng :

n + 21-15-5
n-1-33-7

Vậy : ...