Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số f(x) = xác định trên R\{} và ta có x = 4 ∈ (;+∞).
Giả sử (xn) là dãy số bất kì và xn ∈ (;+∞); xn ≠ 4 và xn → 4 khi n → +∞.
Ta có lim f(xn) = lim = = .
Vậy = .
b) Hàm số f(x) = xác định trên R.
Giả sử (xn) là dãy số bất kì và xn → +∞ khi n → +∞.
Ta có lim f(xn) = lim = lim = -5.
Vậy = -5.
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)
\(L=\lim\limits_{x\rightarrow2}\frac{x-\sqrt{3x-2}}{x^2-4}\)
\(=\lim\limits_{x\rightarrow2}\frac{x^2-3x+2}{\left(x-4\right)\left(x+\sqrt{3x-2}\right)}=\lim\limits_{x\rightarrow2}\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x+2\right)\left(x+\sqrt{3x-2}\right)}\)
\(=\lim\limits_{x\rightarrow2}\frac{x-1}{\left(x+2\right)\left(x+\sqrt{3x-2}\right)}=\frac{1}{16}\)
1. Ta có : \(\lim\limits_{x\rightarrow0}\frac{\tan ax}{\tan bx}=\lim\limits_{x\rightarrow0}\left(\frac{\sin ax}{\sin bx}.\frac{\cos ax}{\cos bx}\right)=\lim\limits_{x\rightarrow0}\frac{\sin ax}{\sin bx}=\lim\limits_{x\rightarrow0}\left(\frac{\frac{\sin ax}{ax}}{\frac{\sin bx}{bx}}.\frac{ax}{bx}\right)=\frac{a}{b}\frac{\lim\limits_{x\rightarrow0}\frac{\sin ax}{ax}}{\lim\limits_{x\rightarrow0}\frac{\sin bx}{bx}}=\frac{a}{b}\frac{\lim\limits_{y\rightarrow0}\frac{\sin y}{y}}{\lim\limits_{z\rightarrow0}\frac{\sin z}{z}}=\frac{a}{b}\)
2. Ta có : \(\lim\limits_{x\rightarrow0}\frac{1-\cos ax}{x^2}=\lim\limits_{x\rightarrow0}\frac{2\sin^2\frac{ax}{2}}{x^2}=\lim\limits_{x\rightarrow0}\left[\left(\frac{\sin\frac{ax}{2}.\sin\frac{ax}{2}}{\frac{ax}{2}.\frac{ax}{2}}\right).\frac{a^2}{2}\right]\)
\(=\frac{a^2}{2}\left(\lim\limits_{y\rightarrow0}\frac{\sin y}{y}\right)^2=\frac{a^2}{2}\)
a) Ta có (x - 2)2 = 0 và (x - 2)2 > 0 với ∀x ≠ 2 và (3x - 5) = 3.2 - 5 = 1 > 0.
Do đó = +∞.
b) Ta có (x - 1) và x - 1 < 0 với ∀x < 1 và (2x - 7) = 2.1 - 7 = -5 <0.
Do đó = +∞.
c) Ta có (x - 1) = 0 và x - 1 > 0 với ∀x > 1 và (2x - 7) = 2.1 - 7 = -5 < 0.
Do đó = -∞.
lim x → - 2 2 x 3 + 15 x + 2 2 = - ∞