K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

\(A=\left|x-2\right|+\left|x-5\right|\\ A=\left|x-2\right|+\left|5-x\right|\)

Có \(\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|\\ \Leftrightarrow A\ge\left|3\right|=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)\left(5-x\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2\\x\le5\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x\ge5\end{matrix}\right.\end{matrix}\right.\)

Trường hợp bên dưới vô lý, loại. Vậy GTNN của \(A=3\) khi \(2\le x\le5\)

10 tháng 4 2021

Áp dụng BĐT `|A|+|B|>=|A+B|` và dấu = `<=>AB>=0`

`=>A=|x-2|+|5-x|>=|x-2+5-x|=3`

Dấu "=" `<=>(x-2)(5-x)>=0`

`<=>(x-2)(x-5)<=0`

`<=>2<=x<=5`

27 tháng 6 2016

\(\left|36^x-5^y\right|\ge0\)

\(\Rightarrow36^x=5^y\)

Nếu y >0 thì 5y có tận cùng là 5, do đó y=0

\(\Rightarrow36^x=5^0=1\)

\(\Rightarrow x=0\)

Do đó GTNN của A =0 khi x = y =0

Có D = |x^2 +x+3 | + |x^2 +x-6| = |x^2 +x+3 | + |-x^2 - x + 6 |

Ta co: D = |x^2 +x+3| +|-x^2 -x + 6 | \(\ge\)| x^2 + x + 3 - x^2 - x + 6 |

\(\ge\)|9 | = 9

D nhỏ nhất chỉ khi D=9

Vậy 9 là giá trị nhỏ nhất của biểu thức D = | x^2 +x+3| + | x^2 + x - 6 |

\(\left|x^2+x+3\right|+\left|x^2+x-6\right|\)

\(=\left|x^2+x+3-x^2-x+6\right|\)

\(\ge9\)

14 tháng 5 2016

Mik làm tóm tắt:

ta có P=|x-2006|+|2007-x|+2006>=x-2006+2007-x+2006=2007

vậy min P=2007 khi:

x-2006>=0 và 2007-x>=0

=> 2006<=x<=2007

29 tháng 4 2016

đề bài là j vậy
 

10 tháng 3 2017

Theo bài ra , ta có :

\(\dfrac{5-x}{x-2}=\dfrac{x-2-2x+4+3}{x-2}=\dfrac{x-2-2\left(x-2\right)+3}{x-2}\)

\(=\dfrac{-1\left(x-2\right)+3}{x-2}=-1+\dfrac{3}{x-2}\)

Để biểu thức đạt GTNN thì \(\dfrac{3}{x-2}\)đạt GTNN

=) x-2 thuộc ước của 3

\(\Rightarrow x-2\in\left\{-1;-3;1;3\right\}\)

Ta có bảng sau :

x - 2 -1 1 -3 3
x 1 3 -1 5

mả tại giá trị x - 2 = 3 thì 3/x-2 đạt GTNN

Vậy MinA = -1 + 1 = 0 khi x = 5

Vậy GTNN của A là 0 khi và chỉ khi x = 5

26 tháng 2 2017

A = x2 + y2 - 6x

A = x2 - 2.3x + 32 + y2 - 9

A = (x - 3)2 + y2 - 9 \(\ge-9\)

Dấu "='' xảy ra khi x = 3; y = 0

26 tháng 2 2017

wow!

8 tháng 8 2016

\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

|4x - 3| lớn hơn hoặc bằng 0

|5y + 7,5| lớn hơn hoặc bằng 0

|4x - 3| + |5y + 7,5| +17,5 lớn hơn hoặc bằng 17,5

Vậy Max A = 17,5 khi x = \(\frac{3}{4}\) và y = \(-1,5\)

26 tháng 7 2017

sorry, i cant do it