Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left|3,4-x\right|\) luôn dương nên để C nhỏ nhất thì \(\left|3,4-x\right|\) nhỏ nhất
\(\Rightarrow\left|3,4-x\right|=0\)
\(\Rightarrow3,4-x=0\)
\(\Rightarrow x=3,4\)
Khi \(x=3,4\) thì giá trị của C là 1,7 + 0 = 1,7
Để D nhỏ nhất thì \(\left|x+2,8\right|=3,5\)
Ta có: \(\left|x+2,8\right|=3,5\)
\(\Rightarrow\left\{{}\begin{matrix}x+2,8=3,5\\x+2,8=-3,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0,7\\x=-6,3\end{matrix}\right.\)
Vậy khi x = 0,7 hoặc x = -6,3 thì D = 3,5 - 3,5 = 0
A = 1,7 + |3,4 - x|
Ta có: |3,4 - x| \(\ge\)0 \(\forall\)x
=> 1,7 + |3,4 - x| \(\ge\)1,7 \(\forall\)x
Dấu "=" xảy ra <=> 3,4 - x = 0 <=> x = 3,4
vậy MinA = 1,7 tại x = 3,4
B = |x + 2,8| - 3,5 (xlđ)
Ta có: |x + 2,7| \(\ge\)0 \(\forall\)x
=> |x + 2,8| - 3,5 \(\ge\)-3,5 \(\forall\)x
Dấu "=" xảy ra <=> x + 2,8 = 0 <=> x = -2,8
Vậy MinB = -3,5 tại x = -2,8
C = |x - 4/7| - 1/2
Ta có: |x - 4/7| \(\ge\)0 \(\forall\)x
=> |x - 4/7| -1/2 \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra <=> x -4/7 = 0 <=> x = 4/7
vậy Min C = -1/2 tại x = 4/7
C=1,7+|3,4-x|
Vì |3,4-x|\(\ge\)0
Suy ra:1,7+|3,4-x|\(\ge\)1,7
Dấu = xảy ra khi 3,4-x=0
x=3,4
Vậy Min C=1,7 khi x=3,4
D=|x+2,8|-3,5
Vì |x+2,8|\(\ge\)0
Suy ra:|x+2,8|-3,5\(\ge\)-3,5
Dấu = xảy ra khi x+2,8=0
x=-2,8
Vậy MIn D=-3,5 khi x=-2,8
C = 1,7 + | 3,4 - x |
Để C nn => | 3,4 - x | phải nn
=> | 3,4 - x | = 0
=> minC = 1,7 + 0 = 1,7
D = | x + 2,8 | - 3,5
Để D nn => | x + 2,8 | phải nn
=> | x + 2,8 | = 0 ( x = -2,8)
=> min D = 0 - 3,5 = -3,5
hic, tíc mình nha!
Có |3,4 - x| \(\ge\)0 với mọi x
=> 1,7 + |3,4 - x| \(\ge\)1,7 với mọi x
=> C \(\ge\)1,7 với mọi x
Dấu "=" xảy ra <=> 3,4 - x = 0 <=> x = 3,4
KL: Cmin = 1,7 <=> x = 3,4
Có |x + 2,8 | \(\ge\)với mọi x
=> |x + 2,8| - 3,5 \(\ge\) -3,5 với mọi x
=> D \(\ge\)-3,5 với mọi x
Dấu "=" xảy ra <=> x + 2,8 = 0 <=> x = -2,8
KL: Dmin = -3,5 <=> x = -2,8
a/ Ta có: -|x - 3,5|\(\le\)0
=> A = 0,5 - |x - 3,5|\(\le\)0,5
Đẳng thức xảy ra khi: |x - 3,5| = 0 => x = 3,5
Vậy giá trị lớn nhất của A là 0,5 khi x = 3,5
b/ Ta có: -|1,4 - x|\(\le\)0
=> B = - |1,4 - x| - 2\(\le\)-2
Đẳng thức xảy ra khi: -|1,4 - x| = 0 => x = 1,4
Vậy giá trị lớn nhất của B là -2 khi x = 1,4
c/ Ta có: |3,4 - x|\(\ge\)0
=> C = 1,7 + |3,4 - x| \(\ge\)1,7
Đẳng thức xảy ra khi: |3,4 - x| = 0 => x = 3,4
Vậy giá trị nhỏ nhất của C là 1,7 khi x = 3,4
d/ Ta có: |x + 2,8|\(\ge\)0
=> D = |x + 2,8| - 3,5 \(\ge\)-3,5
Đẳng thức xảy ra khi: |x + 2,8| = 0 => x = -2,8
Vậy giá trị nhỏ nhất của D là -3,5 khi x = -2,8
Bài giải
\(B=\left|x+2,8\right|-3,5\ge-3,5\forall x\)
Dấu " = " xảy ra khi : \(\left|x+2,8\right|=0\text{ }\Rightarrow\text{ }x=-2,8\)
Vậy \(Min_B=-3,5\text{ khi }x=-2,8\)
B = | x + 2, 8 | - 3, 5
Ta có | x + 2, 8 | ≥ 0 ∀ x => | x + 2, 8 | - 3, 5 ≥ -3, 5
Đẳng thức xảy ra <=> x + 2, 8 = 0 => x = -2, 8
=> MinB = -3, 5 <=> x = -2, 8
C = 1,7 + |3,4 –x|
Vì |3,4 – x| ≥ 0 ⇒ 1,7 + | 3,4 – x| ≥ 1,7
Suy ra C = 1,7 + |3,4 – x| ≥ 1,7
C có giá trị nhỏ nhất là 1,7 khi | 3,4 – x | = 0 ⇒ x = 3,4
Vậy C có giá trị nhỏ nhất bằng 1,7 khi x = 3,4
D = |x + 2,8| -3,5
Vì |x + 2,8| ≥ 0 ⇒ |x + 2,8| - 3,5 ≥ -3,5
Suy ra” D = |x + 2,8 | - 3,5 ≥ -3,5
D có giá trị nhỏ nhất là -3,5 khi | x + 2,8| = 0 ⇒ x = -2,8
Vậy D có giá trị nhỏ nhất bằng -3,5 khi x = -2,8