Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x
a)\(\left(6x^2-3xy^2\right)+M=^2+y^2-2y^2\)
\(\Rightarrow M=\left(x^2+y^2-2xy^2\right)-\left(6x^2-3xy^2\right)\)
\(\Rightarrow M=x^2+y^2-2xy^2-6x^2+3xy^2\)
\(\Rightarrow M=\left(x^2-6x^2\right)+y^2+\left(-2xy^2+3xy^2\right)\)
\(\Rightarrow M=-7x^2+y^2+xy^2\)
b) \(M-\left(2xy-4y^2\right)=5xy+x^2-7y^2\)
\(\Rightarrow M=\left(5xy+x^2-7y^2\right)+\left(2xy-4y^2\right)\)
\(\Rightarrow M=5xy+x^2-7y^2+2xy-4y^2\)
\(\Rightarrow M=\left(5xy+2xy\right)+x^2+\left(-7y^2-4y^2\right)\)
\(\Rightarrow M=7xy+x^2-11y^2\)
a, 3.x2.y + M - x.y=10x2y - 2xy
(3 x2y-xy) +M= 10x2y -2xy
M=10x2y-2xy+( 3x2y -xy)
M=(10x2y+3x2y)-(2xy+xy)
M=13 x2y-3xy
b,(6xy-5y2)-N=x2-2xy+4 y2
N= 6xy -5y2-( x2-2xy+4y2)
N= 6xy -5y2-x2 +2xy -4y2
N= (6xy +2xy)- (5y2+4y2)-x2
N= 8xy -9y2-x2
hok tốt
boy with luv
kt
a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)
=> MinN đạt được bằng 2008 khi
\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)
Thay vào M ,ta có
\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)
b) Với x , y dương , ta được ngay ĐPCM
Với x âm , y âm , ta cũng được ĐPCM
Vậy nên xét trường hợp x,y trái dấu
\(2x^4y^2\ge0\)
\(7x^3y^5\le0\)
\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)
c)
\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)
\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)
mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha
BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN
Bài 4:
Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)
Vì \(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.
Lại có:
\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)
\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)
\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)
\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)
Vậy \(MAX_B=3,5\) khi \(x=y=0\)
5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)
Mà x nguyên tố \(\Rightarrow x=2\)
Thay x=2 vào ta có
51.2+26y=2000
\(\Rightarrow102+26y=2000\)
\(\Rightarrow26y=1898\)
\(\Rightarrow y=73\)
Vậy \(x=2,y=73\)
a) Ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}\) và x-y=4
Áp dụng tính chất dãy tỉ số = nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=-\dfrac{4}{-2}=2\)
Từ:
\(\dfrac{x}{3}=2\Rightarrow x=2\cdot3=6\\ \dfrac{y}{5}=2\Rightarrow y=5\cdot2=10\)
Vậy....
Ta có:
Chọn đáp án C