K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2020

a) Rút gọn:

\(M=\left(x+3\right).\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(M=\left(x+3\right).\left(x^2-3x+3^2\right)-\left(x^3+54-x\right)\)

\(M=x^3+3^3-\left(x^3+54-x\right)\)

\(M=x^3+27-x^3-54+x\)

\(M=x-27.\)

+ Thay \(x=27\) vào biểu thức M ta được:

\(M=27-27\)

\(\Rightarrow M=0.\)

Vậy giá trị của biểu thức M tại \(x=27\) là: \(0.\)

Chúc bạn học tốt!

19 tháng 1 2020

b) Đề có thiếu không bạn? Nguyễn Bảo Anh

29 tháng 10 2017

\(x^2+2xy+y^2-9\\ =\left(x+y\right)^2-3^2\\ =\left(x+y+3\right)\left(x+y-3\right)\)

\(x^4-x^3-3x^2+x+2\\ =x^4-x^2-x^3+x-2x^2+2\\ =x^2\left(x^2-1\right)-x\left(x^2-1\right)-2\left(x^2-1\right)\\ =\left(x^2-1\right)\left(x^2-x-2\right)\\ \left(x^4-x^3-3x^2+x+2\right):\left(x^2-1\right)\\ =\dfrac{x^4-x^3-3x^2+x+2}{x^2-1}\\ =\dfrac{\left(x^2-1\right)\left(x^2-x-2\right)}{x^2-1}\\ =x^2-x-2\)

\(x^2-2x+5\\ =x^2-2x+1+4\\ =\left(x-1\right)^2+4\\ \left(x-1\right)^2\ge0\\ \Leftrightarrow\left(x-1\right)^2+4\ge4>0\)

Vậy biểu thức luôn dương với mọi x

NV
2 tháng 8 2020

a.

\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)

b.

\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)

\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)

c.

Đề thiếu (để ý 2 số hạng cuối)

\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)

\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=1\)

d.

\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)

e.

\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)

\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)

\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)

\(=4\left(a^2+b^2+c^2\right)\)

f.

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)

\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

21 tháng 10 2018

Bài 1 :

a , * A = x2 -2x+9 = x2 -2x +1 +8 = ( x-1) 2 +8 > = 8 với mọi x

Dấu ''='' xảy ra <=> x-1 =0 <=> x=1

vậy GTNN của A = 8 <=> x = 1

* B = x2 +6x -3 = x2 +6x +9 - 12 = ( x+ 3 )2 - 12 >= -12

dấu ''='' xảy ra <=> x+3=0 <=> x = -3

Vậy GTNN của B = -12 <=> x = - 3

*C = (x-1) (x-3) +9 = x2 - 4x +3+9 = x2 -4x +4 + 8 = (x-4 )2 +8 >= 8

Dấu ''='' xảy ra <=> x-4 = 0 <=> x=4

vậy GTNN của C = 8 <=> x =4

b, * D = -x2 -4x + 7 = - ( x2 +4x ) +7 = - ( x2 + 4x +4 ) +4 -7 ( vì có dấu trừ đằng trước nên phải bù ra ngoài là + 4 chứ ko phải - 4

= - ( x+2)2 -3 < hoặc = -3 với mọi x

Dấu ''='' xảy ra <=> x+2 =0 <=> x = -2

Vậy GTLN của D = -3 <=> x = -2

* E ( đề sao sao ý )

Bài 2 ;

a , x2 +2x -15 = x2 +5x -3x -15 = (x2 +5x ) - ( 3x +15) = x( x+5)-3(x+5)

= (x-3)(x+5) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\x+5=0\end{matrix}\right.\)

<=> x= 3 or x=-5

b, tách tương tự