K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2015

gui cho mk cach lam voi

24 tháng 3 2019

Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với  Em  tham khảo tại link này nhé!

24 tháng 3 2019

\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)

<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)

<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên

Có 2 TH

+) Trường hợp 1

\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn

+ Trương hợp 2

\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn

VÂỵ ....

26 tháng 11 2017

Bài 1: 

x3+y3=152=> (x+y)(x2-xy+y2)=152

 Mà x2-xy+y2=19

=> 19(x+y)=152=> x+y=8

Ta cũng có x-y=2

=> x=5;y=3

Bài 2: 

x2+4y2+z2=2x+12y-4z-14

=> x2+4y2+z2-2x-12y+4z+14=0

=> (x2-2x+1)+(4y2-12y+9)+(z2+4z+4)=0

=> (x+1)2+(2y-3)2+(z+2)2=0

=> (x+1)2=(2y-3)2=(z+2)2=0

=> x=-1;y=3/2;z=-2

Bài 3\(\left(\frac{1}{x^2+x}-\frac{1}{x+1}\right):\frac{1-2x+x^2}{2014x}=\left(\frac{1}{x\left(x+1\right)}-\frac{1}{x+1}\right):\frac{\left(1-x\right)^2}{2014x}=\frac{1-x}{x\left(x+1\right)}.\frac{2014x}{\left(1-x\right)^2}=\frac{2014}{\left(x+1\right)\left(1-x\right)}=\frac{2014}{1-x^2}\)

4 tháng 4 2018

Trả lời

Xem như phương trình bậc 2 ẩn x

\(x^2+y^2+5\left(xy\right)^2+60=37xy\)

\(\Leftrightarrow\left(1+5y^2\right)\cdot x^2-37xy+60+y^2=0\)

Denta=\(37^2\cdot y^2-4\cdot\left(60+y^2\right)\cdot\left(1+5y^2\right)\)

\(=-20y^4+165y^2-240=0\)

\(\Rightarrow1< y^2< \pm2\)

Với \(y=2\Rightarrow x=2\)(thỏa mãn)

Với \(y=-2\Rightarrow x=-2\)(thỏa mãn)

Vậy....

7 tháng 4 2018

mk ko hieu doan denta =...

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)