K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

BPT xác định khi x + 1 ≠ 0 ⇔ x ≠ –1.

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{–1}

8 tháng 4 2017

a) ĐKXĐ: D = {x ∈ R/x ≠ 0 và x + 1 ≠ 0} = R\{0;- 1}.

b) ĐKXĐ: D = {x ∈ R/x2 - 4 ≠ 0 và x2 - 4x + 3 ≠ 0} = R\{±2; 1; 3}.

c) ĐKXĐ: D = R\{- 1}.

d) ĐKXĐ: D = {x ∈ R/x + 4 ≠ 0 và 1 - x ≥ 0} = (-∞; - 4) ∪ (- 4; 1].

7 tháng 2 2018

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{0; –1}

5 tháng 5 2018

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = (–∞; 1] \ {–4}.

21 tháng 9 2018

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

BPT xác định khi

Giải bài 1 trang 87 SGK Đại Số 10 | Giải toán lớp 10

Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{–2; 1; 2; 3}

8 tháng 5 2017

a) Đkxđ: \(x-5\ne0\Leftrightarrow x\ne5\).
b) Đkxđ: \(x\in R\).
c) Đkxđ: \(x^2-x-2\ge0\)\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\ge0\)
Th1: \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow x\ge2\).
Th2: \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)\(\Leftrightarrow x< 1\).
Đkxđ: \(\left[{}\begin{matrix}x\ge2\\x< 1\end{matrix}\right.\).
d) Đkxđ: \(x\in R\).

29 tháng 12 2015

em moi hoc lop 6

30 tháng 12 2015

khó wa bạn ơi tick nha tí mik tìm cách giải cho nha

12 tháng 5 2016

Điều kiện \(x\ge-1\) và \(y\ge-2\). Gọi T là tập giá trị  của K. Khi đó \(m\in T\) khi và chỉ khi hệ sau có nghiệm :

\(\begin{cases}x-3\sqrt{x+1}=3\sqrt{y+2}-y\\x+y=m\end{cases}\) \(\Leftrightarrow\begin{cases}3\left(\sqrt{x+1}+\sqrt{y+2}\right)=m\\x+y=m\end{cases}\) (1)

Đặt \(u=\sqrt{x+1};v=\sqrt{y+2}\), điều kiện \(u\ge0;v\ge0\)

Thay vào (1), ta được : 

\(\begin{cases}3\left(u+v\right)=m\\u^2+v^2=m+3\end{cases}\) \(\Leftrightarrow\begin{cases}u+v=\frac{m}{3}\\uv=\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)\end{cases}\)

Hay u và v là nghiệm của phương trình :

\(t^2-\frac{m}{3}t+\frac{1}{2}\left(\frac{m^2}{9}-m-3\right)=0\)

\(\Leftrightarrow18t^2-6mt+m^2-9m-27=0\)  (2)

Hệ (1) có nghiệm x, y thỏa mãn điều kiện  \(x\ge-1\) và \(y\ge-2\) khi và chỉ khi (2) có nghiệm không âm, hay :

\(\begin{cases}\Delta'=-9\left(m^2-18m-54\right)\ge0\\S=\frac{m}{3}\ge0\\P=\frac{m^2-9m-27}{18}\ge0\end{cases}\)

\(\Leftrightarrow\frac{9+3\sqrt{21}}{2}\le m\le9+3\sqrt{15}\)

Vậy \(T=\left[\frac{9+3\sqrt{21}}{2};9+3\sqrt{15}\right]\)

Suy ra Max K = \(\frac{9+3\sqrt{21}}{2}\)

           Min K = \(9+3\sqrt{15}\)

NV
27 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m^3-\left(m+1\right)^2=m^3-4m\ge0\) \(\Rightarrow\left[{}\begin{matrix}m\ge2\\-2\le m\le0\end{matrix}\right.\)

Theo hệ thức Viet:  \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^3+\left(m+1\right)^2\end{matrix}\right.\)

Do \(x_1+x_2\le4\Rightarrow m-1\le2\Rightarrow m\le3\)

\(\Rightarrow\left[{}\begin{matrix}2\le m\le3\\-2\le m\le0\end{matrix}\right.\)

\(P=x_1^3+x_2^3+3x_1x_2\left(x_1+x_2\right)+8x_1x_2\)

\(=\left(x_1+x_2\right)^3+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left[-m^3+\left(m+1\right)^2\right]\)

\(=8\left(5m-2m^2\right)\)

\(P=8\left(5m-2m^2-2+2\right)=16-8\left(m-2\right)\left(2m-1\right)\le16\)

\(P_{max}=16\) khi \(m=2\)

\(P=8\left(5m-2m^2+18-18\right)=8\left(9-2m\right)\left(m+2\right)-144\ge-144\)

\(P_{min}=-144\) khi \(m=-2\)