Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) điều kiện cần và đủ \(\Delta< 0\Rightarrow\left(m+2\right)^2-8\left(m^2-m-1\right)< 0\)
\(\Leftrightarrow-7m^2+12m+12< 0\) \(\Rightarrow\left[{}\begin{matrix}m< \dfrac{6-2\sqrt{30}}{7}\\m>\dfrac{6+2\sqrt{30}}{7}\end{matrix}\right.\)
b) ????
b) Xét \(m^2-m-1=0\)\(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{5}}{2}\\m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Với \(m=\dfrac{1+\sqrt{5}}{2}\) thay vào phương trình ta có:\(-\sqrt{5}x+1\)
Do \(-\sqrt{5}x+1>0\Leftrightarrow x< \dfrac{1}{\sqrt{5}}\) vì vậy \(m=\dfrac{1+\sqrt{5}}{2}\) không thỏa mãn.
Tương tự với \(m=\dfrac{1-\sqrt{5}}{2}\).
Xét \(m^2-m-1\ne0\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1+\sqrt{5}}{2}\\m\ne\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\).
Có \(\Delta=\left(2m-1\right)^2-4.\left(m^2-m-1\right)=5>0\).
Do vậy tam thức bậc hai luôn có hai nghiệm phân biệt nên dấu của tam thức sẽ phụ thuộc vào x.
Kết luận: Không có giá trị nào thỏa mãn.
a)
ĐIều kiện (1)\(\Delta>0\Rightarrow\left(m+3\right)^2-4\left(m^2-1\right)\left(m^2+m\right)>0\)
ĐK(2) c/a <0 => (m^2+m)/(m^2-1) <0
Không cần giải đk (1) vì nếu (m) thủa mãn đk(2) tất nhiên thỏa mãn đk(1) do (x+3)^2 >=0
\(\dfrac{m^2+m}{m^2-1}=\dfrac{T}{M}\)
\(-1< m< 0\Rightarrow T< 0\)
\(-1< m< 1\Rightarrow M< 0\)
Để thủa mãn đk (2) cũng là giá trị m cần tìm là: \(\Rightarrow0< m< 1\)
b)
M thả mãn hệ \(\left\{{}\begin{matrix}\left(m^3+m-2\right)^2-4\left(m^2+m-5\right)\left(1\right)\\\left(m^2+m-5\right)< 0\left(2\right)\end{matrix}\right.\)
Tưng tự câu (a) Nếu (2) thủa mãn => ( 1) thỏa mãn
=> \(\left(2\right)\Rightarrow\dfrac{-1-\sqrt{21}}{2}< m< \dfrac{-1+\sqrt{21}}{2}\) cũng là giá trị m cần tìm
a) \(x^2-2x+m^2+m+3=0\)
Xét \(\Delta=1^2-\left(m^2+m+3\right)=-\left(m^2+m+2\right)=\)
\(=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{7}{4}< 0\) với mọi m.
DO đó phương trình luôn vô nghiệm nên không có giá trị nào thỏa mãn.
b)
(1) a khác 0: \(m^2+m+3>0\forall m\)
(2) \(\Delta>0\Rightarrow\left(4m^2+m+2\right)^2-4m\left(m^2+m+3\right)>0\)
\(=16m^4+4m^3+13m^2-8m+4>0\)
(3) \(\dfrac{c}{a}>0\) => m > 0
(4) \(-\dfrac{b}{a}\) \(< 0\) \(\Leftrightarrow\)\(4m^2+m+2< 0\Rightarrow4\left(m+\dfrac{1}{8}\right)^2+\dfrac{31}{16}< 0\) vô lý
Kết luận không có m thỏa mãn đk đầu bài