Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)
Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?
Riêng mình thì bài này mình dùng delta phẩy cho lẹ:
Lời giải
Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:
\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)
\(\Leftrightarrow m< 9\)
\(\Delta=\left[-\left(m-1\right)\right]^2-4\left(m^2-3m\right)=m^2-2m+1-4m^2+12m=-3m^2+10m+1\)
Để pt có 2 nghiệm trái dấu thì
\(\hept{\begin{cases}\Delta>0\\P< 0\end{cases}\Leftrightarrow\hept{\begin{cases}-3m^2+10m+1>0\\x_1+x_2=m-1< 0\end{cases}\Rightarrow}\hept{\begin{cases}m>\frac{5-2\sqrt{7}}{3}\\m< 1\end{cases}}}\)
Lời giải:
a. Nếu $m=1$ thì PT trở thành:
$4x+1=0$
$\Leftrightarrow x=\frac{-1}{4}$
Nếu $m\neq 1$ thì PT trên là PT bậc 2 ẩn $x$.
PT có nghiệm khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)\geq 0$
$\Leftrightarrow -m^2+5m\geq 0$
$\Leftrightarrow m^2-5m\leq 0$
$\Leftrightarrow m(m-5)\leq 0\Leftrightarrow 0\leq m\leq 5$
Kết hợp 2 TH suy ra PT có nghiệm khi $0\leq m\leq 5$
b. Để PT có thể có 2 nghiệm thì PT phải là PT bậc 2.
$\Rightarrow m\neq 1$
PT có nghiệm pb khi mà: $\Delta'=(m+1)^2-(m-1)(2m-1)> 0$
$\Leftrightarrow -m^2+5m>0$
$\Leftrightarrow m^2-5m<0$
$\Leftrightarrow m(m-5)<0$
$\Leftrightarrow 0< m< 5$
Vậy $0<m< 5$ và $m\neq 1$
c.
PT có 2 nghiệm trái dấu, tức là 2 nghiệm vừa phân biệt và trái dấu.
Từ kết quả phần b, PT có 2 nghiệm phân biệt khi $0< m< 5$ và $m\neq 1$ (1)
Theo định lý Viet, PT có 2 nghiệm trái dấu khi mà tích 2 nghiệm nhỏ hơn $0$
Hay: $\frac{2m-1}{m-1}<0$
$\Leftrightarrow \frac{1}{2}< m< 1$ (2)
Từ $(1); (2)\Rightarrow \frac{1}{2}< m< 1$
Không ai làm
vì đề bài quá dài.
Bạn nên chí nhỏ ra nhé
sẽ có nhiều người giúp...
Phương trình x 2 – 2(m – 1)x – m + 2 = 0 (a = 1; b = −2(m – 1); c = −m + 2)
Nên phương trình có hai nghiệm trái dấu khi ac < 0 ⇔ 1.(−m + 2) < 0
⇔ m > 2
Vậy m > 2 là giá trị cần tìm
Đáp án: B