Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
Vì \(ƯCLN\left(a,b\right)=5\Rightarrow\hept{\begin{cases}a=5.m\\b=5.n\end{cases};\left(m,n\right)=1;m,n\in N;m>n}\)
Thay a = 5.m, b = 5.n vào a.b = 300, ta có:
5.m.5.n = 300
=> (5.5).(m.n) = 300
=> 25.(m.n) = 300
=> m.n = 300 : 25
=> m.n = 12
Vì m và n nguyên tố cùng nhau, m > n
=> Ta có bảng giá trị:
m | 12 | 4 |
n | 1 | 3 |
a | 60 | 20 |
b | 5 | 15 |
Vậy các cặp (a,b) cần tìm là:
(60; 5); (20; 15).
a)
ƯCLN (a, b) = 9 => a = 9p ; b = 9q (q > p > 0,UCLN(p,q) = 1)
Ta có: a + b = 72
=> 9p + 9q = 72
=> 9.(p + q) = 72
=> p + q = 8 = 1 + 7 = 2 + 6 = 3 + 5 = 4 + 4
Mà q > p
=> \(\left(p;q\right)\in\left\{\left(1;7\right),\left(2;6\right);\left(3,5\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(9;63\right),\left(18;54\right),\left(27;45\right)\right\}\)
b)
ƯCLN (a, b) = 2 => a = 2m; b = 2n ( m > n > 0; UCLN(m;n) = 1)
Ta có: a.b = 252
=> 2m.2n = 252
=> 4mn = 252
=> m.n = 63 = 1.63 = 3.21 = 7.9
Mà m < n
\(\Rightarrow\left(m;n\right)\in\left\{\left(1;63\right),\left(3,21\right),\left(7,9\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(2;126\right),\left(6;42\right),\left(14,18\right)\right\}\)
a.ƯCLN(a,b)=12 ⟹a=12.m
b=12.n với m,n N* và (m,n)=1
a+b=120⟹12.m+12.n=120⟹12.(m+n)=120
⟹m+n=120:12=10
m 1 9 3 7
n 9 1 7 3
a 12 108 36 84
b 12 108 36 84
gọi hai số cần tìm là a,b
vi UCLN(a;b) =5
=> a chia het cho 5, b chia het cho 5(UCLN(m;n)=1)
neu m=1 va n=12 thi a=5 va b=60
neu m=12 va n=1 thi a=60 va b=5
neu m=3 va n=4 thi a=15 va b=20
neu m=4 va n=3 thi a=20 va b=15
Đáp án là:
Hai số tự nhiên a và b biết a.b= 300 và ƯCLN(a,b)= 5 là:
5 và 60.
15 và 20.
20 và 15.
60 và 5.
1. Ta có : a : 153 dư 110\(\Rightarrow\)a+110\(⋮\)153
a: 117 dư 110\(\Rightarrow\)a+110\(⋮\)117
\(\Rightarrow\)a+110\(⋮\)153;117\(\Rightarrow\)a+110\(\in\)BC(153;117)
BCNN(153;117)=1989 và 2000<a<5000\(\Rightarrow\)2110<a+110<5110\(\Rightarrow\)a+110\(\in\){3978}\(\Rightarrow\)a=3978-110=3868
a+b=72;UCLN(a;b)=9
Ta có : ƯCLN(a;b)=9\(\Rightarrow\)a=9k;b=9m (k,m nguyên tố cùng nhau)
\(\Rightarrow\)9k+9m=72\(\Rightarrow\)k+m=8 mà k,m nguyên tố cùng nhau
\(\Rightarrow\)k=1;m=7\(\Rightarrow\)a=9;b=63
k=7;m=1\(\Rightarrow\)a=63;b=9
k=3;m=5\(\Rightarrow\)a=27;b=45
k=5;m=3\(\Rightarrow\)a=45;b=27
a) Vì ƯCLN(a,b) =9 suy ra a=9k;b=9t (k;t là số tự nhiên ƯCLN của k;t là 1
Do đó a + b=9k+9t=9(k+t)
Suy ra k+t=72:9=8
Mà k,t là số t.nhiên và k>t nên (k;t)thuộc tập hợp {(0;8);(1;7);(2;6);(3;5);(4;4)}(bạn cho ngược lại nhé
mặt khác ƯCLN(k;t)=1 nên k=7;t=8 or k=3;t=5 sau đó ta tìm được a,b
b)tương tự nhé bạn
kq:a=60;b=5
or a=15;b=20
Câu a giải rồi thì đến câu b
a.b=300
UCLN(a,b)=5
=>Đặt a=5m;b=5n (m và n là hai số nguyên tố cùng nhau m\(\ge\)n)
=>a.b=5m.5n=300
=>m.n=12
Ta có bảng sau: