Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Giả sử ta dịch vân sáng trung tâm về M thì N là vị trí vân sáng thứ 10(có 10 vân tối)
\(\Rightarrow i_1=2mm\) , Khi thay \(\lambda_1\) bằng \(\lambda_2\) \(\Rightarrow\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}\Rightarrow i_2=\frac{i_1\lambda_2}{\lambda_1}=\frac{10}{3}mm\)
M là vị trí của 1 vân giao thoa,Ta có:
Vân trung tâm trên màn không đổi⇒ta tìm vị trí trùng nhau của 2 loai ánh sáng với 2 khoảng vân khác nhau hay tương ứng với khoảng cách từ vân trung tâm tới M.Ta chia 2 TH như sau:
TH1: M là vân tối
\(\frac{10}{3}.\left(n,5\right)=2k\) với n,k nguyên thì phương trình vô nghiệm
TH2:M là vân sáng
\(\frac{10}{3}.x=2y\)
ới x,y nguyên thì phương trình có nghiệm (3;5) và (6;10)
cả 2 nghiệm này đều kết luận trên MN có 7 vân sáng
----->chọn A
Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.
Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.
E M N Eo Eo/2
Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3
Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s
\(I_0 = q_0.\omega = 4.10^{-12}.10^7= 4.10^{-5}A.\)
\(\left(\frac{q}{q_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
=> \(\left(\frac{i}{I_0}\right)^2=1-\left(\frac{q}{q_0}\right)^2 = 1 - \left(\frac{2.10^{-12}}{4.10^{-12}}\right)^2= \frac{3}{4}.\)
=> \(i = I_0.\frac{\sqrt{3}}{2}=2\sqrt{3}.10^{-5}A.\)
Do u vuông pha với i nên áp dụng công thức độc lập thời gian:
\((\dfrac{u}{U_0})^2+(\dfrac{i}{I_0})^2=1\)
\(\lambda = c.T = c/f = \frac{3.10^8}{60.10^9}= 5.10^{-3}m.\)
Hai tụ ghép // thì Cb = Co + C
Bước sóng: \(\lambda=c.2\pi\sqrt{LC}\)
Ta được hệ PT
\(c.2\pi\sqrt{L\left(Co+\frac{1}{23}.10^{-12}\right)}=0,12\)
\(c.2\pi\sqrt{L\left(Co+0,5.10^{-12}\right)}=0,3\)
Bạn giải hệ PT này và tìm L nhé.
Khi đặt thêm bản mỏng trước một trong hai khe thì độ dịch của vân trung tâm là
\(x = \frac{e(n-1)D}{a}\)
Vân trung tâm dời tới vị trí của vân sáng bậc 10 tức là
\(x = x_{s10}= 10.i\)
=> \( \frac{e(n-1)D}{a} = 10.\frac{\lambda D}{a}\)
=> \(e(n-1)=10\lambda\)
=> \(n = \frac{10\lambda }{e}+1=\frac{10.0,5}{10}+1=1,5 \)
Chú ý là giữ nguyên đơn vị của \(\lambda (\mu m)\) và \(e (\mu m)\).
Trong thí nghiệm Y- âng về giao thoa, người ta dùng ánh sáng có bước sóng 0,5 μmμm . Đặt một bản thủy tinh mỏng có độ dầy 10 μmμm vào trước một trong hai khe thì thấy vân sáng trung tâm dời tới vị trí của vân sáng bậc 10. Chiết suất của bản mỏng là
A.1,75.
B.1,45.
C.1,5.
D.1,35.
Đáp án C
đáp án c