Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
1) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=\left(\sqrt{x}\right)^2-2\sqrt{x}+\sqrt{x}-2=x-\sqrt{x}-2\)
2) \(\left(x+4\right)\left(x-2\right)-\left(x-3\right)^2=x^2-2x+4x-8-\left(x^2-6x+9\right)\)\(=x^2+2x-8-x^2+6x-9=8x-17\)
3) \(3x\left(2x^3-3x^2+5\right)=6x^4-9x^3+15x\)
\(\frac{x+6}{x^2-4}-\frac{2}{x^2+2x}\)
\(=\frac{x+6}{\left(x-2\right)\left(x+2\right)}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{x\left(x+6\right)}{x\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+6x-2x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+4x+4}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+2\right)^2}{x\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x+2}{x\left(x-2\right)}\)
\(\frac{x+6}{x^2+4}-\frac{2}{x^2+2x}\)
\(=\frac{x+6}{\left(x+2\right)^2}-\frac{2}{x\left(x+2\right)}\)
\(=\frac{x\left(x+6\right)}{x\left(x+2\right)^2}-\frac{2\left(x+2\right)}{x\left(x+2\right)^2}\)
\(=\frac{x^2+6x-2x-4}{x\left(x+2\right)^2}\)
\(=\frac{x^2+4x-4}{x\left(x+2\right)^2}\)
\(\frac{4-x}{x^3+2x}-\frac{x+5}{x^3-x^2+2x-2}\)( ĐKXĐ : \(x\ne1\))
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{x^2\left(x-1\right)+2\left(x-1\right)}\)
\(=\frac{4-x}{x\left(x^2+2\right)}-\frac{x+5}{\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{\left(4-x\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x\left(x+5\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4}{x\left(x-1\right)\left(x^2+2\right)}-\frac{x^2+5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-\left(x^2+5x\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-x^2+5x-4-x^2-5x}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2x^2-4}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2\left(x^2+2\right)}{x\left(x-1\right)\left(x^2+2\right)}\)
\(=\frac{-2}{x\left(x-1\right)}=\frac{-2}{x\left(x-1\right)}\)
Đang đánh máy thì bấm gửi -..-
\(\frac{3\left(x+1\right)}{x+2}-\frac{3x-6}{x^2-4}\)
\(=\frac{3\left(x+1\right)}{x+2}-\left(\frac{3x-6}{x^2-4}\right)\)
\(=\frac{3x^2-6x^2-12x+24}{x^3+2x^2-4x-8}\)
\(=\frac{3\left(x+2\right)\left(x-2\right)\left(x-2\right)}{\left(x+2\right)\left(x+2\right)\left(x-2\right)}\)
\(=\frac{3x-6}{x+2}\)
\(\frac{x^2+4x+4}{1-x}.\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\)
\(=\frac{x^2+4x+4}{1-x}.\left[\frac{\left(1-x\right)^2}{3\left(x+2\right)^3}\right]\)
\(=\frac{x^4+2x^3-3x^2-4x+4}{-3x^4-15x^3-18x^2+12x+24}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x+2\right)}{3\left(-x+1\right)\left(x+2\right)\left(x+2\right)\left(x+2\right)}\)
\(=\frac{-x+1}{3x+6}\)
a) (-x2 +6x3 - 26x + 21) : (3-2x)
= -3x2 + 5x + 11/2 ( dư 37/1/2)
b) (2x4 - 13x3 - 15 + 5x + 21x2) : (4x-x2 -3)
= -2x2 + 5x + 5
\(a,\left(x-2\right).\left(x-3\right)-\left(x+3\right).\left(x-3\right)\)
\(=\left(x-3\right).\left(x-2-x+3\right)=x-3\)
\(b,\frac{\left(x^2+4x+4\right)}{x+2}-4x+5=\frac{\left(x+2\right)^2}{x+2}-4x+5\)
\(x+2-4x+5=-3x+7\)
a) \(\left(x-2\right)\left(x-3\right)-\left(x+3\right)\left(x-3\right)\)
\(=\left(x^2-5x+6\right)-\left(x^2-9\right)\)
\(=x^2-5x+6-x^2+9\)
\(=15-5x\)
b) \(\left(x^2+4x+4\right):\left(x+2\right)-\left(4x-5\right)\)
\(=\left(x+2\right)^2:\left(x+2\right)-\left(4x-5\right)\)
\(=\left(x+2\right)-4x+5\)
\(=x+2-4x+5\)
\(=7-3x\)
1,\(\frac{3}{2x+6}-\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x}{x\left(2x+6\right)}+\frac{x-6}{x\left(2x+6\right)}\)
=\(\frac{3x+x-6}{x\left(2x+6\right)}\)=\(\frac{4x-6}{x\left(2x+6\right)}=\frac{2\left(2x-3\right)}{x\left(2x+6\right)}\)
- a)4x(5x2-2x+3)=20x3-8x2+12x
b)(x-2)(x2-3x+5)=x3-3x2+5x-2x2+6x-10