K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Đáp án B

 

Ta có:

 

(vì Ed = -Et / 2)

 

28 tháng 5 2017

18 tháng 3 2016

Năng lượng của electron ở trạng thái dừng n là \(E_n = -\frac{13,6}{n^2}.(eV)\)

\(hf_1 =\frac{hc}{\lambda_1}= E_3-E_1.(1) \)

\(hf_2 =\frac{hc}{\lambda_2}= E_5-E_2.(2) \)

Chia hai phương trình (1) và (2): \(\frac{\lambda_2}{\lambda_1}= \frac{E_3-E_1}{E_5-E_2}.(3)\)

Mặt khác: \(E_3-E_1 = 13,6.(1-\frac{1}{9}).\)

                 \(E_5-E_2 = 13,6.(\frac{1}{4}-\frac{1}{25}).\)

Thay vào (3) => \(\frac{\lambda_2}{\lambda_1}= \frac{800}{189}\) hay \(189 \lambda_2 = 800 \lambda_1.\)

22 tháng 3 2016

B nha

đúng 100% lun ak

tick mik đi

mik tick lại cho

13 tháng 4 2019

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

V
violet
Giáo viên
19 tháng 4 2016

Khi electron chuyển từ L (n = 2) sang K (n = 1) phát ra phô tôn có bước sóng λ21 thỏa mãn:

\(\frac{hc}{\lambda_{21}}= E_2-E_1,(1)\)

Tương tự

\(\frac{hc}{\lambda_{32}}= E_3-E_2,(2)\)

\(\frac{hc}{\lambda_{31}}= E_3-E_1,(3)\)

Cộng (2) cho (1), so sánh với (3): 

\(\frac{hc}{\lambda_{21}}+\frac{hc}{\lambda_{32}}= \frac{hc}{\lambda_{31}}\)=> \(\frac{1}{\lambda_{31}}=\frac{1}{\lambda_{21}}+\frac{1}{\lambda_{32}} \)

                            => \(\lambda_{31}= \frac{\lambda_{32}\lambda_{21}}{\lambda_{32}+\lambda_{21}}.\)

V
violet
Giáo viên
27 tháng 4 2016


\(A \rightarrow B+ _2^4He\)

Áp dụng định luật bảo toàn động lượng 

\(\overrightarrow P_{A} =\overrightarrow P_{B} + \overrightarrow P_{\alpha} \)

Mà ban đầu hạt A đứng yên => \(\overrightarrow P_{A} = \overrightarrow 0\)

=>  \(\overrightarrow P_{B} + \overrightarrow P_{\alpha} = \overrightarrow 0 .\)

=> \(P_B = P_{\alpha}\)

Mà  \(P_{\alpha}^2 = 2m_{\alpha}K_{\alpha};P_B^2 = 2m_BK_B \)

=> \(2m_{\alpha}K_{\alpha}=2m_BK_B \)

=> \(\frac{K_B}{K_{\alpha}}= \frac{m_{\alpha}}{m_B}.\)

11 tháng 4 2016

\(_0^1n + _3^6 Li \rightarrow X + \alpha\)

Áp dụng định luật bảo toàn động lượng 

\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)

    P P P He X n

Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)

=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)

=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)

Áp dụng định luật bảo toàn năng lượng toàn phần

\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)

=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)

Từ (1) và (2) giải hệ phương trình

\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)

11 tháng 4 2016

câu c

V
violet
Giáo viên
19 tháng 4 2016

\(E_n = -\frac{13,6}{n^2},(eV)\)(với n = 1, 2, 3,..)

Nguyên tử hiđrô hấp thụ một phôtôn có năng lượng 2,55 eV. 

Việc đầu tiên là cần phải xác định xem nguyên tử nhảy từ mức nào lên mức nào mà có hiệu năng lượng giữa hai mức đúng bằng 2,55 eV.

\(E_1 = -13,6eV\)\(E_3 = -1,51 eV\)

\(E_2 = -3,4eV\),\(E_4 = -0,85eV\)

Nhận thấy \(E_4-E_2= -0,85 +3,4= 2,55 eV.\)

Như vậy nguyên tử đã hấp thụ năng lượng và nhảy từ mức n = 2 lên mức n = 4.

Tiếp theo, nguyên tử đang ở mức n = 4 rồi thì nó có thể phát ra bước sóng nhỏ nhất ứng với từ n = 4 về n = 1 tức là \(\lambda_{41}\) thỏa mãn

\(\lambda_{41}= \frac{hc}{E_4-E_1}= \frac{6,625.10^{-34}.3.10^8}{(-0,85+13,6).1,6.10^{-19}}=9,74.10^{-8}m. \)