Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu \(a\) là số gần đúng của số đúng \(\overline{a}\) thì \(\Delta_a=\left|\overline{a}-a\right|\) được gọi là sai số tuyệt đối của số gần đúng \(a\).
Nếu \(\Delta_a=\left|\overline{a}-a\right|\le d\) thì \(-d\le\overline{a}-a\le d\) hay \(a-d\le\overline{a}\le a+d\) .
Ta nói \(a\) là số gần đúng của \(\overline{a}\) với độ chính xác \(d\), và quy ước viết gọn là \(\overline{a}=a\pm d\).
a) Dạng chuẩn của số π với 10 chữ số chắc là 3,141592654 với sai số tuyệt đối ∆π≤ 10-9.
b) Viết π ≈ 3,14 ta mắc phải sai số tuyệt đối không quá 0,002. Trong cách viết này có 3 chữ số đáng tin.
Viết π ≈ 3,1416 ta mắc phải sai số tuyệt đối không quá 10-4. Viết như vậy thì số π này có 5 chữ số đáng tin.
Đáp án: C
Sai số tuyệt đối là: Δa = |a|.δa = 123456. 0,2% = 146,912.
Đáp án: A
Sai số tuyệt đối là: Δa = |a| . δa = 2,1739. 1% = 0,021739.
a)
Sai số tuyệt đối là: \(\Delta = \left| {e - 2,7} \right| = \;|2,718281828459 - 2,7|\; = 0,018281828459 < 0,02\)
Sai số tương đối là: \({\delta _a} = \frac{{{\Delta _a}}}{{|a|}} < \frac{{0,02}}{{2,7}} \approx 0,74\% \)
b) Quy tròn e đến hàng phần nghìn ta được: 2,718.
c)
Hàng của chữ số khác 0 đầu tiên bên trái của d = 0,00002 là hàng phần trăm nghìn.
Quy tròn e đền hàng phầm trăm nghìn ta được 2,71828
Yêu cầu ở câu a) là quy tròn đến hàng phần trăm còn yêu cầu ở câu b) chỉ yêu cầu quy tròn tức là ta phải quy tròn số với độ chính xác đã cho.
Đáp án: A
Sai số tuyệt đối của 0,57 là: |4/7 - 0,57| ≈ 0,001.
Đáp án: C
Sai số tuyệt đối của 0,57 là: |3/13 - 0,23| ≈ 0,0008
được gọi là sai số tuyệt đối của số gần đúng a.
được gọi là độ chính xác của số gần đúng a.