Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(|A| = |-A| \Rightarrow |a(b-2)|=|a(2-b)| \)
Nếu \(|A|=|-A|\Leftrightarrow A \ge 0\) thì \(|a(2-b)| = a(2-b) \Leftrightarrow a(2-b) \ge 0\)
\(\Rightarrow\) Có 4 TH
+ a = 0, b bất kì
+ 2 - b = 0, a bất kì hay b = 2, a bất kì
+ a > 0, 2 - b > 0 hay a > 0, b < 2
+ a < 0, 2 - c < 0 hay a < 0, b > 2
Thời gian có hạn copy cái này hộ mình vào google xem nha: :
Link : https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi. Mình là phụ trách
OK<3
1a/ Để B có nghĩa thì x+1≥0 => x≥-1
b/ B>2
=> \(\sqrt{x+1}>2\)
\(\Rightarrow x+1>4\Rightarrow x>3\)
2a/ Để A có nghĩa thì 2003-x≥0 => x≤2003
b/ Ta có \(\sqrt{2003-x}\ge0\forall x\)
=>A≥2004
MinA=2004 khi x=2003
Chúc bạn học tốt!
ta có: a(2-b)= -a(b-2)
|a(b-2)|=-a(b-2) <=>a(b-2)<0
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 0\\b-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>0\\b-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 0\\b>2\end{matrix}\right.\\\left\{{}\begin{matrix}a>0\\b< 2\end{matrix}\right.\end{matrix}\right.\)
1. G= 3x2y - 2xy2 + x3y3 + 3xy2 - 2x2y - 2x3y3
G = x2y + xy2 - x3y3 = xy (x + y -x2y2) . Khi x= -2 . y=4 ta có G= -2*4( -2 + 4 - (-2)2 * 42 ) = 496
a. B+A =( -2x2 + xy +2y2 -5x +2y - 3) + ( x2 -3xy -y2 +2x -3y +1)= -x2 - 2xy + y2 -3x -y -2
A-B= -( -2x2 +xy + 2y2 -5x +2y -3) + ( x2 -3xy -y2 + 2x -3y +1) = 3x2 -4xy -3y2 +7x -5y +4
Tại x = -1, y =2
A= (-1)2 -3*(-1)*2 -22 +2*(-1) -3*2 +1 = -4
B= -2*(-1)2 + (-1)*2 + 2*22 -5*(-1) + 2*2 -3 = 10
Nhắc lại về định nghĩa trị tuyệt đối:
\(\left|A\right|=0\text{ khi }A=0\)
\(\left|A\right|=A\text{ khi }A>0\)
\(\left|A\right|=-A\text{ khi }A<0\)
Cũng có thể viết \(\left|A\right|=A\text{ khi }A\ge0;\text{ }\left|A\right|=-A\text{ khi }A\le0\)
\(\left|a\left(b-2\right)\right|=a\left(2-b\right)\Leftrightarrow\left|a\left(b-2\right)\right|=-a\left(b-2\right)\)
\(\Leftrightarrow a\left(b-2\right)\le0\)
\(\Leftrightarrow\left(a\le0\text{ và }b-2\ge0\right)\text{ hoặc }\left(a\ge0\text{ và }b-2\le0\right)\)
\(\Leftrightarrow\left(a\le0\text{ và }b\ge2\right)\text{ hoặc }\left(a\ge0\text{ và }b\le2\right)\)