Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(TH1:a,2\left|x-3\right|+\left|2x+5\right|=11\)
\(\Rightarrow2x-6+2x+5=11\)
\(\Rightarrow4x-1=11\)
\(\Rightarrow4x=12\)
\(\Rightarrow x=3\)
\(TH2:2\left|x-3\right|+\left|2x+5\right|=11\)
\(\Rightarrow-2x+6-2x-5=11\)
\(\Rightarrow-4x+1=11\)
\(\Rightarrow-4x=10\)
\(\Rightarrow x=-2,5\)
\(TH1:b,\left|x-3\right|+\left|5-x\right|+2\left|x-4\right|=2.2\)
\(\Rightarrow x-3+5-x+2x-8=4\)
\(\Rightarrow2x-6=4\)
\(\Rightarrow x=5\)
\(TH2:\left|x-3\right|+\left|5-x\right|+2\left|x-4\right|=4\)
\(\Rightarrow-x+3-5+x-2x+8=4\)
\(\Rightarrow-2x+6=4\)
\(\Rightarrow x=1\)
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
a)|x|-x=3/4 =>.x-x=3/4=>0x=3/4 ( vo li)
hoac-x-x=3/4=>-2x=3/4=>x=3/4:(-2)=-3/8
b)|x-2|=x =>x-2=x=>0x=2(vo li)
hoac x-2=-x=>2x=2=>x=1
c)giai tuonh tu cau b nhe
A=1.2.3+2.3.4+3.4.5+...+98.99.100
a, Vào câu hỏi tương tự nhé
b, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|x+1\right|\ge0\Rightarrow3x\ge0\Rightarrow x\ge0}\)
=> x+3+x+1=3x
=> 2x+4=3x
=>x=4
c, \(\left|x-4\right|+\left|x-10\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|=\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
Có \(\left|4-x\right|\ge4-x;\left|10-x\right|\ge10-x;\left|x+990\right|\ge x+990;\left|x+1000\right|\ge x+1000\)
=>\(\left|4-x\right|+\left|10-x\right|+\left|x+101\right|+\left|x+990\right|+\left|x+1000\right|\)
=> \(2005\ge4-x+10-x+x+990+x+1000+\left|x+101\right|\)
=> \(2005\ge\left|x+101\right|+2004\)
=> \(\left|x+101\right|\le1\)
=> \(x+101\in\left\{-1;0;1\right\}\Rightarrow x\in\left\{-102;-101;-100\right\}\)
d, tương tự b
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)