K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

Ta có: |2x - 1| = |1 - 2x|

Lại có: \(\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=\left|4\right|=4\)

Mà \(\left|2x+3\right|+\left|1-2x\right|=\frac{8}{3\left(x+1\right)^2+2}\)

\(\Rightarrow\frac{8}{3\left(x+1\right)^2+2}=4\)\(\Rightarrow3\left(x+1\right)^2+2=8\div4\)\(\Rightarrow3\left(x+1\right)^2+2=2\)\(\Rightarrow3\left(x+1\right)^2=2-2=0\)\(\Rightarrow\left(x+1\right)^2=0\)\(\Rightarrow x+1=0\)\(\Rightarrow x=-1\)

1 tháng 1 2020

Sửa bài:

\(\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\) với mọi x

\(\frac{8}{3\left(x+1\right)^2+2}\le\frac{8}{3.0+2}=4\)với mọi x

=> \(\left|2x+3\right|+\left|2x-1\right|\ge\frac{8}{3\left(x+1\right)^2+2}\)với mọi x

=> \(\left|2x+3\right|+\left|2x-1\right|=\frac{8}{3\left(x+1\right)^2+2}\)

<=> \(\hept{\begin{cases}\left(2x+3\right)\left(1-2x\right)\ge0\\\left(x+1\right)^2=0\end{cases}\Leftrightarrow}x=-1\)

Vậy S = { -1 }

7 tháng 7 2019

\(a,\left(x+1\right)^2=81\) 

    \(\left(x+1\right)^2=9^2\)  Hoặc \(\left(x+1\right)^2=\left(-9\right)^2\)

      \(\left(x+1\right)=9\)                     \(x+1=-9\)

                     \(x=8\)                               \(x=-10\)

b,\(\left(x+5\right)^{^{ }3}=-64\)

  \(\left(x+5\right)^3=\left(-4\right)^3\)

          \(x+5=-4\)

=>               \(x=-9\)

c,\(\left(2x-3\right)^2=9\)

=>\(\left(2x-3\right)^2=3^2\)Hoặc  \(\left(2x-3\right)^2=\left(-3\right)^2\)

            \(2x-3=3\)                    \(2x-3=-3\)

                     \(2x=6\)                             \(2x=0\)       

=> \(\hept{\begin{cases}x=3\\x=0\end{cases}}\)

d, \(\left(4x+1\right)^3=27\)

   \(\left(4x+1\right)^{^{ }3}=3^3\)

            \(4x+1=3\)

                     \(4x=2\)

                       \(x=\frac{1}{2}\)

\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{8^6}{4}=\frac{\left(2^3\right)^6}{2^2}=\frac{2^{18}}{2^2}=2^{16}\)

7 tháng 7 2019

\(D=\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{4^{15}+4^{10}}{4^6+4^{11}}=\frac{4^{10}.4^5+4^{10}}{4^6+4^6.4^5}=\frac{4^{10}.\left(4^5+1\right)}{4^6.\left(4^5+1\right)}=\frac{4^{10}}{4^6}=4^4=256\)

phần D trên mk làm sai xin lỗi nha

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

4 tháng 9 2019

Ta có: |2x - 5| \(\ge\)\(\forall\)x

=> |2x - 5| + 1,(3) \(\ge\)1,(3)

hay |2x - 5| + 4/3 \(\ge\)4/3

Dấu "=" xảy ra <=> 2x - 5 = 0 <=>  x = 5/2

Vậy Min F = 4/3 <=> x = 5/2

Ta có: G = |x - 3| + |x + 3/2|

G = |3 - x| + |x + 3/2| \(\ge\)|3 - x + x + 3/2| = |3/2| = 3/2

Dấu "=" xảy ra <=> (3 - x)(x + 3/2) \(\ge\)0

<=> -3/2 \(\le\)\(\le\)3

Vậy MinG = 3/2 <=> -3/2 \(\le\)\(\le\)3

4 tháng 9 2019

Làm lại cho Edogawa Conan

\(G=\left|x-3\right|+\left|x+\frac{3}{2}\right|\)

\(G=\left|3-x\right|+\left|x+\frac{3}{2}\right|\ge\left|\left(3-x\right)+\left(x+\frac{3}{2}\right)\right|\)

\(=\frac{9}{2}\)

Vậy \(G_{min}=\frac{9}{2}\Leftrightarrow\left(3-x\right)\left(x+\frac{3}{2}\right)\ge0\)

\(Th1:\hept{\begin{cases}3-x\ge0\\x+\frac{3}{2}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge\frac{3}{2}\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le2\)

\(Th2:\hept{\begin{cases}3-x\le0\\x+\frac{3}{2}\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\left(L\right)\)

9 tháng 7 2016
  • Vì \(\left|x-\frac{1}{2}\right|\ge0\)

=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)

A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)

=>\(\left|x-\frac{1}{2}\right|=0\)

=>\(x-\frac{1}{2}=0\)

=>x=\(\frac{1}{2}\)

Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)

  • Vì \(\left|2x+4\right|\ge0\)

=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)

B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)

<=>|2x+4|=0

<=>2x+4=0

<=>2x=-4

<=>x=-2

Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)