K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2015

58 đồng dư với 54 ( mod 10 000)

51994 = (58)249.52 

(58)249 đồng dư với (54)249 = 5996 = (58)124.54 (mod 10 000)

(58)124 đồng dư với (54)124 (mod 10 000)

(54)124 = 5496 = (58)62 đồng dư với (54)62 (mod 10 000)

(54)62 = 5248 = (58)31 đồng dư với (54)31 (mod 10 000)

(54)31  = 5124 = (58)15.54  đồng dư với (54)15.54 (mod 10 000)

(54)15.54 = 564 đồng dư với (54)8 = (58)4 đồng dư với (54)4 = (58)2 đồng dư với (54)2 (mod 10 000)

(54)2 = 58 đồng dư với 54 (mod 10 000)

Vậy (58)249 đồng dư với 54.54 = 5(mod 10 000) ; đồng dư với 54 (mod 10 000)

=> 51994 đồng dư với 54.5= 5(mod 10 000) 

56 đồng dư với 5 625 (mod 10 000)

=> 51994 có 4 chữ số tận cùng là 5 625

MK CÓ CÁCH TÌM 4 CHỮ SỐ CUỐI NÈ! NHỚ TK NHÉ!

\(\left(...0001\right)^n=0001;\left(...0625\right)^n=...0625;\left(...9376\right)^n=...9376\)

Cái này bn phải nhớ nhé!

\(2^{500}=...9376;3^{500}=...0001;5^8=...0625;6^{125}=...9376;7^{100}=...0001\)

Trong 1 tích 4 chữ số cuối là tích 4 chữ số cuối của 2 thừa số

\(5^{2018}=\left(5^8\right)^{252}\cdot5^2=\left(...0625\right)\cdot0025=...5625\)

(Cái này bấm máy tính được)

28 tháng 7 2019

Cách 1 : \(5^8=390625\). Ta thấy số tận cùng bằng 0625 nâng lên lũy thừa nguyên dương bất kì vẫn tận cùng bằng 0625 chỉ kiểm tra : ....0625 x ....0625

Do đó : \(5^{2018}=5^{8k+2}=25\left[5^8\right]^k=25\left[0625\right]^k=25\left[...0625\right]=....5625\)

29 tháng 11 2016

10p suy nghi

29 tháng 11 2016

Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000

Trước hết ta tìm số dư của phép chia 2100 cho 125

Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ có thể  là 126, 376, 626 hoặc 876

Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8

trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8

Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376

Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376

30 tháng 6 2020

Theo đề bài ta có phương trình : \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}=x\left(a,b,c,d,e,f,g,h,i,j,x\inℕ\right)\)

Ta có \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}\) do chữ số tận cùng của tích \(ca\) (đặt là \(y\)) khi nhân với \(b\) thì có chữ số tận cùng là 9 (áp dụng phép đặt tính và nhân lần lượt các thừa số \(\overline{abc},\overline{bca},\overline{cab}\)). Vậy có 2 trường hợp xảy ra.

TH1 : \(yb=9=1\cdot1\cdot9=1\cdot3\cdot3\)

TH1a : \(a=1,b=1,c=9\Rightarrow x=119\cdot191\cdot911=20706119\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH1a vô lí)

TH1b : \(a=1,b=3,c=3\Rightarrow x=133\cdot331\cdot313=1379199\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 7 chữ số vậy TH1b vô lí)

TH2 : \(yb=49=1\cdot7\cdot7\Rightarrow\overline{abc}=177\Rightarrow x=177\cdot771\cdot717=97846839\) 

(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH2 vô lí)

Vậy \(\overline{abc}\in\left\{\varnothing\right\}\)