Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)
\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)
\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)
\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)
\(\Leftrightarrow-x\le11\)
\(\Leftrightarrow x\le-11\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
\(a,ĐKXĐ:x\ne\pm\frac{1}{2}\)
Ta có: \(\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Leftrightarrow2\left(2x-1\right)-3\left(2x+1\right)=4\)
\(\Leftrightarrow4x-2-6x-3=4\)
\(\Leftrightarrow-2x=9\)
\(\Leftrightarrow x=-\frac{9}{2}\)(Tm ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=-\frac{9}{2}\)
\(b,ĐKXĐ:x\ne\pm1;-3\)
Ta có: \(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x-1\right)\left(x+1\right)\)
\(\Leftrightarrow2x\left(x^2+2x-3\right)+18x+18=\left(2x-5\right)\left(x^2-1\right)\)
\(\Leftrightarrow2x^3+4x^2-6x+18x+18=2x^3-2x-5x^2+5\)
\(\Leftrightarrow9x^2+14x+13=0\)
\(\Leftrightarrow\left(9x^2+14x+\frac{49}{9}\right)+\frac{68}{9}=0\)
\(\Leftrightarrow\left(3x+\frac{7}{3}\right)^2+\frac{68}{9}=0\)
Pt vô nghiệm
\(c,ĐKXĐ:x\ne1\)
Ta có: \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\)
\(\Leftrightarrow x^2+x+1+2x^2-5=x-1\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=\pm1\)
Kết hợp vs ĐKXĐ được x = -1
Vậy pt có nghiệm duy nhất x = -1
làm lần lượt nha(bài nào k bt bỏ qua)
\(a,\frac{2}{2x+1}-\frac{3}{2x-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow\frac{2\left(2x-1\right)-3\left(2x+1\right)}{4x^2-1}=\frac{4}{4x^2-1}\)
\(\Rightarrow-2x-5=4\)
\(\Rightarrow-2x=9\)
\(\Rightarrow x=\frac{9}{-2}\)
\(x+\frac{x+1}{2}+\frac{x+2}{3}+\frac{x+3}{4}=1\)
\(\Rightarrow\frac{12x}{12}+\frac{6x+6}{12}+\frac{4x+8}{12}+\frac{3x+9}{12}=\frac{12}{12}\)
\(\Rightarrow25x+23=12\)
\(\Rightarrow x=\frac{-11}{25}\)
\(\text{GIẢI :}\)
ĐKXĐ : \(x\ne1,\text{ }x\ne-2\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=\frac{x\left(x-1\right)}{x-1}+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=x+\left(\text{-}x\right)\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{1}{x+2}=0\)
\(\Leftrightarrow\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{x-1}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Rightarrow2\left(x+2\right)+\left(x-1\right)=0\)
\(\Leftrightarrow2x+4+x-1\)
\(\Leftrightarrow3x+3=0\)
\(\Leftrightarrow3x=\text{-3}\Leftrightarrow x=\text{-1}\)
Vậy tập nghiệm của phương trình đã cho là \(S=\left\{-1\right\}\).
\(\frac{2}{x-1}+\frac{1}{x+2}=\frac{x^2-x}{x-1}+\left(-x\right)\left(đk:x\ne1;-2\right)\)
\(\frac{2\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\frac{x\left(x-1\right)}{x-1}-x\)
\(< =>\frac{2x+4+x-1}{\left(x-1\right)\left(x+2\right)}=x-x=0\)
\(< =>2x+4+x-1=0\)
\(< =>3x=1-4=-3\)
\(< =>x=\frac{-3}{3}=-1\left(tmđk\right)\)
Vậy nghiệm của phương trình trên là \(\left\{-1\right\}\)
phương trình tương đương với 1+\(\frac{1}{x}+1+\frac{1}{x+3}\)=1+\(\frac{1}{x+1}+1+\frac{1}{x+2}\)\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+3}=\frac{1}{x+2}+\frac{1}{x+1}\)
\(\Leftrightarrow\frac{2x+3}{x\left(x+3\right)}=\frac{2x+3}{\left(x+1\right)\left(x+2\right)}\)\(\Leftrightarrow\left(2x+3\right)\left(\frac{1}{x\left(x+3\right)}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)\)=0
\(\Leftrightarrow\left(2x+3\right)\left(\frac{\left(x+1\right)\left(x+2\right)-x\left(x+3\right)}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{2}{x\left(x+1\right)\left(x+2\right)\left(x+3\right)}\right)=0\)\(\Leftrightarrow2x+3=0\Leftrightarrow x=\frac{-3}{2}\)