K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

\(3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=9.3^n+3^n-\left(8.2^{n-1}+2.2^{n-1}\right)=10.3^n-10.2^{n-1}=10\left(3^n-2^{n-1}\right)\)Chia hết cho 10

25 tháng 6 2016

dấu + đó trong bài là dâu = à bạn 

26 tháng 6 2016

không, là dấu +

6 tháng 7 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)

\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(\Rightarrow3^n\cdot10-2^n\cdot5\)

\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)

\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10

6 tháng 7 2016

b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)

\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(\Rightarrow3^n\cdot30+2^n\cdot12\)

\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)

\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

20 tháng 9 2015

click vào câu hỏi tương tự

1 tháng 8 2016

b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại

c) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^n.4+3^n.1-2^n.1\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n.2^{n-1}\right)\)

6 tháng 8 2015

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n \left(3^2+1\right)+2^n\left(2^2+1\right)=3^n.10+2^{n-1}.10=10\left(3^n-2^{n-1}\right)\) chia hết cho 10

6 tháng 8 2015

ta có

3^n+2=3^n.3^2

2^n-2=2^n.2^2

=>3^n.3^2 - 2^n.2^2 + 3^n-2^n=3^n.(3^2+1) - 2^n.(2^2+1)=3^n.10 - 2^n.5

Mà 3^n.10 luôn chia hết cho 10

2^n.5=10.2^n-1 luôn chia hết cho 10

=>3^n.10-2^n.5 chia hết cho 10

=>3^n+2 - 2^n+2 + 3^2 - 2^n chia hết cho 10

29 tháng 10 2017

=\(3^n\).\(3^2\)-\(2^n\).\(2^2\)+\(3^n\)-\(2^n\)

=\(^{3^n}\).9 - \(2^n\).4 +\(^{3^n}\)\(2^n\)

=10 .\(3^n\)-5.\(2^n\)

=10.\(3^n\)-5.2.\(2^{n-1}\)

=10 .(\(3^n\)-\(2^n\) )

=> chia hết cho 10

29 tháng 10 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)

\(=3^n\cdot10-2^n\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot2\cdot5\)

\(=3^n\cdot10-2^{n-1}\cdot10\)

\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(dpcm\right)\)

22 tháng 7 2017

Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)\)

Thấy: \(3^{n+2}+3^n=3^n.2^2+3^n=9.3^n+3^n=3^n.\left(9+1\right)=3^n.10\)

\(\Rightarrow3^{n+2}+3^n⋮10\)\(\left(1\right)\)

\(2^{n+2}+2^n=4.2^n+2^n==2^n\left(4+1\right)=2^n.5=2.2^{n-1}.5=10.2^{n-1}\)

\(\Rightarrow2^{n+2}+2^n⋮10\)\(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{n+2}+2^n-\left(2^{n+2}+2^n\right)⋮10\Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\) (đpcm)

k!