K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

Vì B là trung điểm của AE, B là trung điểm DC

=> AE và DC cắt nhau tại trung điểm mỗi đường

=> Tứ giác ACED là hình bình hành

Ta có: \(S_{ACED}=S_{ABC}+S_{BEC}+S_{BDE}+S_{ABD}\)

\(=\frac{1}{2}\cdot AB\cdot BC\cdot\sin\widehat{ABC}+\frac{1}{2}BE\cdot BC\cdot\sin\widehat{EBC}+\frac{1}{2}BE\cdot BD\cdot\sin\widehat{EBD}+\frac{1}{2}BD\cdot BA\cdot\sin\widehat{ABD}\)

\(=8\sqrt{3}\left(cm^2\right)\)

29 tháng 12 2017
mk cx đang bí câu này mà ko ai trả lời. chán thât!
19 tháng 4 2020

a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:

AB2+AC2=BC2

=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)

6 tháng 3 2020

C H D E B A

+)Ta có:BA = BE (gt)

\(\implies\) B là trung điểm của AE\(\left(1\right)\)

+)Ta có:BD = BC (gt)

\(\implies\) B là trung điểm của DC\(\left(2\right)\)

Từ (1);(2) \(\implies\) B là trung điểm của AE ; DC

\(\implies\) AE và DC cắt nhau tại B

\(\implies\) Tứ giác ADEC là hình bình hành 

+)Kẻ AH vuông góc với DC 

Xét tam giác AHB có:

ABH + BAH + AHB =180 (tổng ba góc trong một tam giác)

\(\implies\) 60 + BAH + 90 =180

 \(\implies\)​​​ BAH =30 

\(\implies\) BH =\(\frac{1}{2}\) AB 

\(\implies\) BH = \(1\)  (cm)

Xét tam giác ABH vuông tại H có:

\(AH^2+BH^2=AB^2\) (định lý Py - ta - go)

 \(\implies\) \(AH^2+1^2=2^2\)

 \(\implies\) \(AH^2+1=4\)

 \(\implies\) \(AH^2=3\) (cm)

Ta có: BH + HC = BC

\(\implies\)1 + HC = 4

\(\implies\) HC = 3 (cm)

Xét tam AHC vuông tại H có:

\(AH^2+HC^2=AC^2\) (định lý Py - ta - go)

\(\implies\) \(3+3^2=AC^2\)

\(\implies\) \(3+9=AC^2\)

\(\implies\) \(AC^2=12\) 

\(\implies\) \(AC=\sqrt{12}\) (cm)

Ta có:HB + BD = HD

\(\implies\) 1 + 4 = HD

\(\implies\) HD = 5 (cm)

+)Xét tam giác AHD vuông tại H có:

\(AH^2+HD^2=AD^2\) (định lý Py - ta - go)

\(\implies\) \(3+5^2=AD^2\)

\(\implies\) \(3+25=AD^2\)

\(\implies\) \(28=AD^2\)

\(\implies\) \(AD=\sqrt{28}\) (cm)

Vậy diện tích hình tứ giác \(ACED\)\(=\sqrt{28}.\sqrt{12}=\sqrt{336}\) (cm)

6 tháng 3 2020

Lần đầu tớ vẽ hình trên máy tính nên có gì sai sót thì cậu thông cảm cho 

7 tháng 2 2021

giúp tui với!

18 tháng 7 2019

A B C E D M M

a) Vì AM là phân giác của góc BAC

nên góc BAM = CAM

Xét ΔBAM và ΔCAM có:

AB = AC ( giả thiết )

Góc BAM = CAM ( chứng minh trên )

AM cạnh chung.

=> Δ BAM = ΔCAM ( c.g.c )

=> BM = CM ( 2 cạnh tương ứng )

mà M nằm giữa B và C

Do đó M là trung điểm của BC → ĐPCM.

b) Ta có: AB + BE = AE

AC + CF = AF

mà AB = AC ( đề bài ); AE = AF (đề bài)

=> BE = CF.

Do ΔBAM = ΔCAM nên góc ABC = ACB ( 2 góc tương ứng )

Lại có: Góc ABC + CBE = 180 độ (kề bù)

Góc ACB + BCF = 180 độ (kề bù)

=> ABC + CBE = ACB + BCF

=> Góc CBE = BCF.

Xét ΔBCE và ΔCBF có:

BE = CF ( chứng minh trên)

Góc CBE = BCF ( chứng minh trên)

BC cạnh chung ( theo hình vẽ)

=> ΔBCE = ΔCBF ( c.g.c ) → ĐPCM.

c) Lại do ΔBCE = ΔCBF nên góc EBC = FCB ( 2 góc tương ứng ) hay góc EBM = FCM

Xét ΔMBE và ΔMCF có:

MB = MC ( chứng minh ở câu a )

Góc EBM = FCM ( chứng minh trên)

BE = FC ( chứng minh ở câu b)

=> ΔMBE = ΔMCF ( c.g.c )

=> ME = MF ( 2 cạnh tương ứng ) → ĐPCM.

d) Xét ΔEMN và ΔFMN có:

EM = FM ( chứng minh ở câu c )

EN = FN ( N là trung điểm EF )

MN chung.

=> ΔEMN = ΔFMN.

=> Góc ENM = FNM (2 góc tương ứng)

Suy ra MN là tia phân giác của góc ENF (1)

Có: góc BAM = CAM

Suy ra AM là tia phân giác của góc BAC (2)

Từ (1) và (2) suy ra A, M, N nằm trên cùng 1 đường thẳng.

Do đó A, M, N thẳng hàng → ĐPCM.

18 tháng 7 2019

A B C M E F N

CM:a) Xét t/giác ABM và ACM

có: AB = AC (gt)

  \(\widehat{BAM}=\widehat{CAM}\) (gt) 

   AM : chung

=> t/giác ABM = t/giác ACM (c.g.c)

=> BM = CM (2 cạnh t/ứng)

=> M là trung điểm của BC

b) Ta có: AE + AC = EC 

         AF + AB = FB

mà AE = AF (gt); AB = AC (gt)

=> EC = FB

Xét t/giác BCE và t/giác CBF

có: BC : chung

  \(\widehat{BCE}=\widehat{FBC}\) (vì t/giác ABC cân)

 EC = FB (cmt)

=> t/giác BCE = t/giác CBF (c.g.c)

c) Xét t/giác BEM và t/giác CFM

có: EB = FC (vì t/giác BCE = t/giác CBF)

 \(\widehat{EBM}=\widehat{FCM}\) (vì t/giác BCE = t/giác CBF)

 BM = CM (cm câu a)

=> t/giác BEM = t/giác CFM (c.g.c)

=> ME = MF (2 cạnh t/ứng)

d) Xét t/giác AEN và t/giác AFN

có: AE = AF (gt)

  EN = FN (gt)

  AN : chung

=> t/giác AEN = t/giác AFN (c.c.c)

=> \(\widehat{EAN}=\widehat{MAF}\) (2 góc t/ứng)

=> AN là tia p/giác của góc EAF => \(\widehat{EAN}=\widehat{MAF}=\frac{\widehat{EAF}}{2}\)

AM là tia p/giác của góc BAC => \(\widehat{BAM}=\widehat{CAM}=\frac{\widehat{BAC}}{2}\)

Mà \(\widehat{EAF}=\widehat{BAC}\) (đối đỉnh)

=> \(\widehat{EAN}=\widehat{NAF}=\widehat{BAM}=\widehat{MAC}\)

Ta có: \(\widehat{FAN}+\widehat{NAE}+\widehat{EAB}=180^0\) 

hay \(\widehat{BAM}+\widehat{EAB}+\widehat{EAN}=180^0\)

=> A, M, N thẳng hàng

25 tháng 2 2018

A B C D E

Ta thấy AB = BD (GT) ; AC=CE (GT)

Mà AB = AC ( do tam  gaics ABC cân tại A)

Nên BD=CE

Ta thấy ^DBA = 180 dộ - ^ABC

           ^ECA = 180 độ - ^ACB

mà ^ABC = ^ ACB suy ra ^DBA = ^ ECA

Xét tam giác ABD và tam giác ACE có: 

              AB = AC

               ^BDA = ^ECA (cmt)

             BD = CE ( cmt )

suy ra tam giác ABD = tam giác ACE (c.g.c)

Suy ra ^D = ^ E ( 2 cạnh tương ứng)

Suy ra tam giac ADE cân tại A

+, ta thấy DE = BD + BC + CE

MÀ BD =AB ( GT ); CE= AC (GT)

Suy ra DE = AB+ BC+AC

b, Tam giác ABC có: ^BAC + ^ABC+^ACB = 180

                              32 + ^ABC + ^ ACB =180

                               ^ABC + ^ACB = 180-32=158

Suy ra ^ABC = ^ ACB = 158 :2 = 79

Mà ^ABC là góc ngoài của tam giac ABD cân tại b

Nên ^D=79:2=39,5

Suy ra D =^E= 39,5( tam giác ADE cân)

SUY ra DAC= 180-39,5-39,5=101