\(\text{Cho A = a - b + c + 1; B = a + 2}\)

\( \left(a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có A=B

=>a-b+c+1=a+2

<=>c=b+1

=>đpcm

3 tháng 11 2018

Ta có : A=a-b+c + 1

            B= a+2

mà A=B =>  a-b+c+1 = a+2

                   a-b+c -a = 2-1

                   -b +c = 1

                   c - b = 1

mà 2 số nguyên liên tiếp nhau là 2 số có khonagr cách  = 1

=> c và b là 2 số nguyên liên tiếp

14 tháng 1 2019

2.  n=27

14 tháng 1 2019

trình bày rõ ràng nha

27 tháng 6 2018

1.

(a - b) - (b + c) + (c - a) - (a - b - c)

= a - b - b - c + c - a - a + b + c

= (a - a) + (b - b) + (c - c) - (a + b - c)

=0 + 0 + 0 - (a + b - c)

= - (a + b - c)    (đpcm)

2. chju

27 tháng 6 2018

P = a . ( b - a ) - b . ( a - c ) - bc

P = ab - a- ba + bc - bc

P = ab - a2 - ba

P = a . ( b - a - b )

P = a . ( - a ) mà a khác 0 => P có giá trị âm

Vậy biểu thức P luôn âm với a khác 0

26 tháng 10 2018

a) Đặt (a, a - b) = d. Ta có:

\(\hept{\begin{cases}a⋮d\\a-b⋮d\end{cases}}\Rightarrow a-\left(a-b\right)⋮d\Rightarrow b⋮d\)

Do đó \(d\inƯC\left(a,b\right)\Rightarrow d=1\)

Vậy...

phần 

d

sai 

đề

bạn

6 tháng 3 2021

Giả sử \(a< b< c\)thì \(a\ge2\)\(;\)\(b\ge3\)\(;\)\(c\ge5\)

Ta có:

\(\frac{1}{\left[a,b\right]}=\frac{1}{ab}\le\frac{1}{6}\)\(;\)\(\frac{1}{\left[b,c\right]}=\frac{1}{bc}\le\frac{1}{15}\)\(;\)\(\frac{1}{\left[c,a\right]}=\frac{1}{ca}\le\frac{1}{10}\)

Do đó: \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{6}+\frac{1}{15}+\frac{1}{10}=\frac{1}{3}\)

\(\Rightarrow\)\(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\)\(\frac{1}{3}\)\(\rightarrowĐPCM\)

10 tháng 2 2020

a + b - b + a + c = 2a + c

a + a + c = 2a + c

2a +c = 2a + c

học tốt

10 tháng 2 2020

 (a+b)-(b-a)+c

 =a+b-b+a+c

=2a+c