\(\text{Câu 1: Cho đường tròn (O;R) và đoạn thẳng AB cố định nằm bên ngoài đường tròn (O). Gọi C...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

C B A G O H D

Gọi D là trung điểm của AB . Vì AB cố định nên D cố định, đồng thời O cũng cố định => OD cố định.

Qua G kẻ đường thẳng d song song với OC , cắt OD tại H 

Ta có : \(\hept{\begin{cases}GH\text{//}OC\\GD=\frac{1}{3}CD\end{cases}\Rightarrow\hept{\begin{cases}DH=\frac{1}{3}OD\\HG=\frac{1}{3}OC=\frac{1}{3}R\end{cases}}}\) => DH không đổi => H cố định.

Vì H cố định, \(HG=\frac{1}{3}R\)không đổi nên G di chuyển trên đường tròn tâm H , bán kính \(\frac{R}{3}\)

Vậy \(G\in\left(H;\frac{R}{3}\right)\)

27 tháng 2 2018

a) Tam giác vuông ABO và ACO có chung cạnh huyền AO nên O, B, A, C cùng thuộc đường tròn đường kính AO.

b) Theo tính chất hai tiếp tuyến cắt nhau, ta có AB = AC nên ABC là tam giác cân tại A.

Lại có AO là phân giác nên đồng thời là đường trung tuyến. Vậy thì AO đi qua H hay A, H, O thảng hàng.

Theo liên hệ giữa góc ở tâm và góc nội tiếp cùng chắn một cung, ta có \(\widehat{KDC}=\frac{\widehat{BOC}}{2}\)

Theo tính chất hai tiếp tuyến cắt nhau ta cũng có: \(\widehat{COA}=\frac{\widehat{BOC}}{2}\)

Suy ra \(\widehat{KDC}=\widehat{COA}\)

Vậy thì \(\Delta KDC\sim\Delta COA\left(g-g\right)\Rightarrow\frac{CK}{AC}=\frac{CD}{AO}\Rightarrow AC.CD=CK.AO\)

c) Ta thấy \(\widehat{ABN}=\widehat{NBC}\)   (Góc nội tiếp và góc tạo bởi tiếp tuyến dây cung chắn các cung bằng nhau)

Vậy nên BN là phân giác góc ABC.

Lại có AN là phân giác góc BAC nên N là tâm đường tròn nội tiếp tam giác ABC.

d) Gọi J là trực tâm tam giác ABC. Ta có ngay \(JC\perp AB;BJ\perp AC\)

Vậy thì BO // JC ; BJ // OC

Suy ra tứ giác JBOC là hình bình hành.

 Lại có OB = OC nên JBOC là hình thoi.

Từ đó ta có JB = JC = OB = OC = R.

Vậy khi A di chuyển trên tia By cố định thì BJ = R hay J thuộc đường tròn tâm B, bán kính R. 

30 tháng 4 2016

mình giống bạn ra câu y hệt mà ko ai giúm giùm chắc tại khó quá

6 tháng 2 2018

a) Gọi I, K lần lượt là trung điểm của AE và BC.

Ta có : \(EB^2=\left(BK-EK\right)^2;EC^2=\left(KC+EK\right)^2\)

\(\Rightarrow EB^2+EC^2=2\left(BK^2+EK^2\right)=2\left(BO^2-OK^2+OE^2-OK^2\right)\)

\(=2\left(R^2+r^2\right)-4OK^2\)

\(AE^2=4AI^2=4\left(r^2-OI^2\right)\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+6r^2-4\left(OI^2+OK^2\right)\)

Mà OIEK là hình chữ nhật nên \(OI^2+OK^2=OE^2=r^2\)

\(\Rightarrow EB^2+EC^2+EA^2=2R^2+2r^2\) không đổi.

b) Giả sử EO giao với AK tại J.

Vì IOEK là hình chữ nhật nên OK song song và bằng EI. Vậy nên OK song song và bằng một nửa AE.

Do đó \(\frac{JE}{JO}=\frac{AJ}{JK}=\frac{AE}{OK}=2\)

Vì OE cố định nên J cố định; Vì AK là trung tuyến của tam giác ABC nên J là trọng tâm tam giác ABC

Suy ra J thuộc MC.

Vậy MC đi qua J cố định.

c) Vì AK = 3/2AJ nên H trùng K.

Do đó OH vuông góc BC. Suy ra H thuộc đường tròn đường kính OE.

4 tháng 3 2018

cảm ơn bạn nhiều