K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 4 2020

ĐKXĐ: x thuộc góc phần tư thứ nhất của cung lượng giác

\(\Leftrightarrow3\left(\sqrt{sinx}-1\right)=\sqrt{cosx}\)

Do \(\sqrt{sinx}\le1\Rightarrow\left\{{}\begin{matrix}VT\le0\\VP\ge0\end{matrix}\right.\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{sinx}=1\\\sqrt{cosx}=0\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

NV
5 tháng 10 2020

1.

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)+sinx.cosx-1=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)-\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx-1\right)\left(1-sinx.cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=1\\sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\\\frac{1}{2}sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin2x=2\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
5 tháng 10 2020

2.

\(\Leftrightarrow\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx=cos2x\)

\(\Leftrightarrow cos2x=cos\left(x-\frac{\pi}{3}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=x-\frac{\pi}{3}+k2\pi\\2x=\frac{\pi}{3}-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

3.

\(\Leftrightarrow\sqrt{3}cosx-3sinx=2sin5x-2sinx\)

\(\Leftrightarrow\sqrt{3}cosx-sinx=2sin5x\)

\(\Leftrightarrow-\left(\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx\right)=sin5x\)

\(\Leftrightarrow sin5x=-sin\left(x-\frac{\pi}{3}\right)=sin\left(\frac{\pi}{3}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\frac{\pi}{3}-x+k2\pi\\5x=\frac{2\pi}{3}+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

4 tháng 7 2017

Điều kiện xác định:

\(sinx+\sqrt{3}cosx\ge0\Leftrightarrow tanx\ge-\sqrt{3}\Leftrightarrow x\ge\dfrac{2\pi}{3}+k\pi\)

Đặt \(t=\sqrt{sinx+\sqrt{3}cosx},t\ge0\)

Phương trình đã cho trở thành:

\(t^2+t-2=0\Leftrightarrow\left(t-1\right)\left(t+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\left(\text{nhận}\right)\\t=-2\left(\text{loại}\right)\end{matrix}\right.\)

Với t = 1, ta có

\(sinx+\sqrt{3}cosx=1\Leftrightarrow2.\left(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx\right)=1\)

\(\Leftrightarrow2.cos\left(x-\dfrac{\pi}{6}\right)=1\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Đối chiếu với điều kiện xác định, ta phải có

\(\left\{{}\begin{matrix}\dfrac{\pi}{2}+k2\pi\ge\dfrac{2\pi}{3}+k\pi\\-\dfrac{\pi}{6}+k2\pi\ge\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k\ge\dfrac{1}{6}\\k\ge\dfrac{5}{6}\end{matrix}\right.\) \(\Rightarrow k\ge1\)

Vậy phương trình có hai họ nghiệm là \(x=\dfrac{\pi}{2}+k2\pi\)\(x=-\dfrac{\pi}{6}+k2\pi\) với \(k\in Z,k\ge1\)

Đặt \(\sqrt{3}\sin x+\cos x=a\)

Theo đề, ta có: \(a=3+\dfrac{1}{a+1}=\dfrac{3a+3+1}{a+1}=\dfrac{3a+4}{a+1}\)

\(\Leftrightarrow a^2+a-3a-4=0\)

\(\Leftrightarrow a^2-2a-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\)

TH1: \(a=1+\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}\sin x+\cos x=\sqrt{5}+1\)(1)

Vì \(3+1=4< 6+2\sqrt{5}\)

nên (1) vô nghiệm

TH2: \(a=1-\sqrt{5}\)

\(\Leftrightarrow\sqrt{3}\sin x+1\cos x=1-\sqrt{5}\)

\(\Leftrightarrow\sin\left(x+\dfrac{\Pi}{6}\right)=\dfrac{1-\sqrt{5}}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{\Pi}{6}=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi\\x+\dfrac{\Pi}{6}=\Pi-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+k2\Pi-\dfrac{\Pi}{6}\\x=-arcsin\left(\dfrac{1-\sqrt{5}}{2}\right)+\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)

NV
22 tháng 9 2019

a/ ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne-\frac{\pi}{6}+k2\pi\\x\ne\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(1+sinx-2sin^2x\right)\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)

\(\Leftrightarrow\sqrt{3}sinx-cosx=sin2x+\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(cosx+\sqrt{3}sinx\ne0\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)\ne0\Rightarrow...\)

Đặt \(cosx+\sqrt{3}sinx=2sin\left(x+\frac{\pi}{6}\right)=a\) với \(-2\le a\le2\):

\(a=\frac{3}{a}+1\Leftrightarrow a^2-a-3=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{1+\sqrt{13}}{2}>2\left(l\right)\\a=\frac{1-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow2sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{2}\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{4}=sin\alpha\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\alpha+k2\pi\\x+\frac{\pi}{6}=\pi-\alpha+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)

NV
19 tháng 10 2020

ĐKXĐ: ..

\(\frac{sin3x+sinx+sin2x}{cos3x+cosx+cos2x}=\sqrt{3}\)

\(\Leftrightarrow\frac{2sin2x.cosx+sin2x}{2cos2x.cosx+cos2x}=\sqrt{3}\)

\(\Leftrightarrow\frac{sin2x\left(2cosx+1\right)}{cos2x\left(2cosx+1\right)}=\sqrt{3}\)

\(\Leftrightarrow tan2x=\sqrt{3}\)

\(\Leftrightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)

NV
26 tháng 7 2020

c/

\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=cos3x\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos3x\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=3x+k2\pi\\x+\frac{\pi}{3}=-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)

d/

\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=sin2x\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=2x+k2\pi\\3x-\frac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)

NV
26 tháng 7 2020

a/

\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=sin\left(x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\pi-x-\frac{\pi}{6}+k2\pi\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

b/

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin\frac{\pi}{12}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=sin\frac{\pi}{12}\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{12}+k2\pi\\x+\frac{\pi}{6}=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

NV
28 tháng 10 2020

d.

\(\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

e.

\(\Leftrightarrow cosx.cos\left(\frac{\pi}{12}\right)-sinx.sin\left(\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{12}\right)=\frac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{12}=\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{12}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

NV
28 tháng 10 2020

2.a.

ĐKXĐ: ...

\(\sqrt{3}tanx-\frac{6}{tanx}+2\sqrt{3}-3=0\)

\(\Leftrightarrow\sqrt{3}tan^2x+\left(2\sqrt{3}-3\right)tanx-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-2\\tanx=\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-2\right)+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)

b.

ĐKXĐ: \(x\ne k\pi\)

\(1-sin2x=2sin^2x\)

\(\Leftrightarrow1-2sin^2x-sin2x=0\)

\(\Leftrightarrow cos2x-sin2x=0\)

\(\Leftrightarrow cos\left(2x+\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow...\)