K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\dfrac{8-4\sqrt{3}-3\left(\sqrt{3}-1\right)-2}{\sqrt{3}-1-2}=\dfrac{6-4\sqrt{3}-3\sqrt{3}+3}{\sqrt{3}-3}\)

\(=\dfrac{-7\sqrt{3}+3}{\sqrt{3}-3}=3\sqrt{3}+2\)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

a)

\(\frac{4}{\sqrt{10}}(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})=\frac{4}{\sqrt{20}}(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}})\)

\(=\frac{4}{2\sqrt{5}}(\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}})=\frac{2}{\sqrt{5}}[\sqrt{(\sqrt{5}+1)^2}+\sqrt{(\sqrt{5}-1)^2}]\)

\(=\frac{2}{\sqrt{5}}(\sqrt{5}+1+\sqrt{5}-1)=\frac{2}{\sqrt{5}}.2\sqrt{5}=4\)

b)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{3+5-2\sqrt{3.5}}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})\)

\(=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})=2(16-15)=2\)

c)

\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+8\sqrt{3}+18}=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(3+1+2\sqrt{3})+2}\)

\(=\sqrt{4\sqrt{2}(\sqrt{3}+1)+4(\sqrt{3}+1)^2+2}\)

\(=\sqrt{(2\sqrt{3}+2)^2+(\sqrt{2})^2+2.(2\sqrt{3}+2).\sqrt{2}}\)

\(=\sqrt{(2\sqrt{3}+2+\sqrt{2})^2}=2\sqrt{3}+2+\sqrt{2}\)

NV
19 tháng 4 2020

Câu 3: đề là \(\sqrt{x+5}-\sqrt{x-2}\) hay \(\sqrt{x+5}-\sqrt{x+2}\)?

Câu 4:

ĐKXĐ: \(x\le9\)

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x-4}=a\\\sqrt{9-x}=b\end{matrix}\right.\) ta có hệ:

\(\left\{{}\begin{matrix}a-b=-1\\a^3+b^2=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=a+1\\a^3+b^2=5\end{matrix}\right.\)

\(\Rightarrow a^3+\left(a+1\right)^2=5\)

\(\Leftrightarrow a^3+a^2+2a-4=0\) \(\Rightarrow a=1\)

\(\Rightarrow\sqrt[3]{x-4}=1\Rightarrow x-4=1\Rightarrow x=5\)

5.

ĐKXĐ: \(x\ge-\frac{17}{16}\)

\(\Leftrightarrow8x^2-15x-23-\left(x+1\right)\sqrt{16x+17}=0\)

\(\Leftrightarrow\left(x+1\right)\left(8x-23\right)-\left(x+1\right)\sqrt{16x+17}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\8x-23=\sqrt{16x+17}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow16x+17-2\sqrt{16x+17}-63=0\)

Đặt \(\sqrt{16x+17}=t\ge0\)

\(\Rightarrow t^2-2t-63=0\Rightarrow\left[{}\begin{matrix}t=9\\t=-7\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{16x+17}=9\Leftrightarrow x=\frac{32}{3}\)

19 tháng 4 2020

mình cần phần 3 4 5 nữa thui ạ

20 tháng 3 2019

(ĐK:\(1\le x\le2\))

Phương pháp giải những bài căn thức phức tạp như thế này thường là liên hợp và ở đây nghiệm đẹp đó là x=1 vì thế ta thực hiện liên hợp như sau:

\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}+2\left(x-1\right)+\sqrt{x+3}-2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}+2\left(x-1\right)+\frac{x-1}{\sqrt{x+3}+2}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(1+2\sqrt{x^2-3x+5}+2\sqrt{x-1}+\frac{1}{\sqrt{x+3}+2}\right)=0\)

Dễ dàng chứng minh giá trị trong ngoặc dương nên x=1

Vậy S={1}

4 tháng 9 2017

a) \(\sqrt{\left(\sqrt{7-2}\right)^2}=\sqrt{5}\)

b)\(\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2-3\sqrt{2}\right)^2}\)

=\(\sqrt{2}-1-2+3\sqrt{2}=4\sqrt{2}-3\)

c)\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

=\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=2\sqrt{3}\)

d) hình như bn ghi sai

e)\(\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)

=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{4-2\sqrt{3}}}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{4+2\sqrt{3}}}\right):\sqrt{2}\)

=\(\left(\dfrac{\sqrt{2+\sqrt{3}}}{\sqrt{3}-1}+\dfrac{\sqrt{2-\sqrt{3}}}{\sqrt{3}+1}\right):\sqrt{2}\)

=\(\dfrac{\sqrt{2+\sqrt{3}}\left(\sqrt{3}+1\right)+\sqrt{2-\sqrt{3}}\left(\sqrt{3}-1\right)}{2\sqrt{2}}\)

=\(\dfrac{\sqrt{6+3}+\sqrt{2+\sqrt{3}}+\sqrt{6-3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)

=\(\dfrac{3+\sqrt{2+\sqrt{3}}+\sqrt{3}-\sqrt{2+\sqrt{3}}}{2\sqrt{2}}\)

=\(\dfrac{3+\sqrt{3}}{2\sqrt{2}}\)

f) \(\sqrt{9a^2}+3a-7=-3a+3a-7=-7\)

g)\(\dfrac{\sqrt{4x^2-4x+1}}{4x-2}+3x+2\)

=\(\dfrac{\sqrt{\left(2x-1\right)^2}}{4x-2}+3x+2=\dfrac{2x-1}{2\left(2x-1\right)}+3x+2\)

=\(\dfrac{1}{2}+3x+2=\dfrac{5}{2}+3x\)

h)\(\sqrt{\left(5a-1\right)^2}+2a-3\)

nếu a<0 :\(-5a+1+2a-3=-3a-2\)

nếu a>0 : \(5a-1+2a-3=7a-4\)

i)\(\sqrt{\dfrac{2a}{5}}.\sqrt{\dfrac{5a}{18}}+2\left(a-1\right)\)

=\(\sqrt{\dfrac{10a^2}{90}}+2a-2=\sqrt{\dfrac{a^2}{9}}+2a-2\)

=\(\dfrac{a}{3}+2a-2=\dfrac{7a}{3}-2\)

10 tháng 11 2021

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

10 tháng 11 2021

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

a: Đặt \(x^2-4=a\)

Pt sẽ là \(a=3\sqrt{xa}\)

\(\Rightarrow a^2=9xa\)

\(\Leftrightarrow a\left(a-9x\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-9x\right)=0\)

hay \(x\in\left\{2;-2;\dfrac{9+\sqrt{97}}{2};\dfrac{9-\sqrt{97}}{2}\right\}\)

d: Đặt \(\sqrt{x^2-x+1}=a;\sqrt{x^2+x+1}=b\)

Pt sẽ là 2a+b=ab+2

=>(b-2)(1-a)=0

=>b=2 và 1-a

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+1=4\\x^2-x+1=1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

3 tháng 7 2023

\(a,\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\sqrt{3^2}-2\sqrt{3}+1}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=-1\)

\(b,\dfrac{x^2+2\sqrt{2}x+2}{x^2-2}\left(dk:x\ne\pm\sqrt{2}\right)\\ =\dfrac{x^2+2\sqrt{2}x+\sqrt{2^2}}{x^2-\sqrt{2^2}}\\ =\dfrac{\left(x+\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}\\ =\dfrac{x+\sqrt{2}}{x-\sqrt{2}}\)

\(c,\sqrt{9x^2}-2x\left(dk:x< 0\right)\\ =\sqrt{3^2}.\sqrt{x^2}-2x\\ =3\left|x\right|-2x\\ =-3x-2x\\ =-5x\)

\(d,\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\\ =\sqrt{\sqrt{2^2}+2.3\sqrt{2}+3^2}-3+\sqrt{2}\\ =\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}\\ =\sqrt{2}+3-3+\sqrt{2}\\ =2\sqrt{2}\)

\(e,\dfrac{x^2-5}{x+\sqrt{5}}\left(dk:x\ne-\sqrt{5}\right)\\ =\dfrac{\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)}{x+\sqrt{5}}\\ =x-\sqrt{5}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 1:

\(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}=\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2+3+2\sqrt{2.3}}\)

\(=\sqrt{(\sqrt{2}-\sqrt{3})^2}+\sqrt{\sqrt{2}+\sqrt{3})^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

\(B=(\sqrt{10}+\sqrt{6})\sqrt{8-2\sqrt{15}}\)

\(=(\sqrt{10}+\sqrt{6}).\sqrt{3+5-2\sqrt{3.5}}\)

\(=(\sqrt{10}+\sqrt{6})\sqrt{(\sqrt{5}-\sqrt{3})^2}\)

\(=\sqrt{2}(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})=\sqrt{2}(5-3)=2\sqrt{2}\)

\(C=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\)

\(C^2=8+2\sqrt{(4+\sqrt{7})(4-\sqrt{7})}=8+2\sqrt{4^2-7}=8+2.3=14\)

\(\Rightarrow C=\sqrt{14}\)

\(D=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{2}\sqrt{3-\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{6-2\sqrt{5}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{5+1-2\sqrt{5.1}}\)

\(=(3+\sqrt{5})(\sqrt{5}-1).\sqrt{(\sqrt{5}-1)^2}\)

\(=(3+\sqrt{5})(\sqrt{5}-1)^2=(3+\sqrt{5})(6-2\sqrt{5})=2(3+\sqrt{5})(3-\sqrt{5})=2(3^2-5)=8\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Bài 2:

a) Bạn xem lại đề.

b) \(x-2\sqrt{xy}+y=(\sqrt{x})^2-2\sqrt{x}.\sqrt{y}+(\sqrt{y})^2=(\sqrt{x}-\sqrt{y})^2\)

c)

\(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=(\sqrt{x}.\sqrt{y}+2\sqrt{x})-(3\sqrt{y}+6)\)

\(=\sqrt{x}(\sqrt{y}+2)-3(\sqrt{y}+2)=(\sqrt{x}-3)(\sqrt{y}+2)\)