Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=3x^2-6x+m\)
để hàm số đồng biến trên R thì y'>0 với mọi x thuộc R
suy ra \(\begin{cases}3>0\\\Delta=9-3m<0\end{cases}\) suy ra m>3
vậy m>3 là điều cần tìm
S là tập con của F trong các trường hợp sau:
TH1: S là tập rỗng, tức là pt x2 - 2x + m = 0 vô nghiệm => delta' = 1 - m < 0 => m > 1
TH2: S có 1 nghiệm kép < 0 => delta' = 1 - m = 0 và nghiệm kép -b'/a = 1 < 0. Điều này không xảy ra
TH3: S có 2 nghiệm đều < 0 => Tổng 2 nghiệm cũng < 0. Mà tổng 2 nghiệm = -b/a = 1 là số dương => Điều này cũng ko bao giờ xảy ra.
Vậy m > 1 thì S là rỗng và khi đó S là tập con của F.
giả sử : \(\frac{mx+m}{\left(m+1\right)x-m+2}>0\)\(,\text{∀}x\in\left[0;2\right]\)
\(\Rightarrow\frac{m.0+m}{\left(m+1\right).0-m+2}>0\) \(\Rightarrow\frac{m}{2-m}>0\)
\(\Rightarrow0\)\(<\)\(m<\)\(2\)
ngược lại \(0<\)\(m<2\) thì:
\(mx+m>0,\text{∀}x\in\left[0;2\right]\)
\(\left(m+1\right)x\ge0>m-2,\)\(\text{∀}x\in\left[0;2\right]\)
\(\Rightarrow\left(m+1\right)x-m+2>0,\text{∀}x\in\left[0;2\right]\)
\(\Rightarrow\frac{mx+m}{\left(m+1\right)x-m+2}>0,\text{∀}x\in\left[0;2\right]\)
vậy: \(0\)\(<\)\(m<\)\(2\) là kết quả cần tìm
*x2+bx+c=0
\(\Delta=b^2-4c=b^2-4.\left(2b-4\right)=b^2-8b+16=\left(b-4\right)^2\)=>\(\sqrt{\Delta}=\left|b-4\right|\)
Với (b-4)2=0 =>b=4 =>c=4
PT có 1 nghiệm kép: \(x_1=x_2=-2\)
Với\(\Delta=\) (b-4)2>0,PT có 2 nghiệm pb: \(x_1=\frac{-b+\left|b-4\right|}{2};x_2=\frac{-b-\left|b-4\right|}{2}\)
Với b>4 thì: \(x_1=-2;x_2=\frac{-2b+4}{2}=-b+2\)
Với b<0 thì: x1=-b+2 ; x2=-2
Vậy khi c=2b-4 và b tùy ý thì PT: x2+bx+c=0 luôn có 1 nghiệm nguyên là -2
ta tính \(y'=\frac{x\left(x-2\right)}{\left(x-1\right)^2}\)
giải pt y'=0
ta có \(x\left(x-2\right)=0\) suy ra x=0 hoặc x=2
bảng bt
x y' y -2 0 1/2 2 0 0 + - -7/3 -1 -3/2
hàm số đạt giá trị lớn nhất =-1 tại x=0, đạt giá trị nhỏ nhất =-7/3 tại x=-2
ta có \(y'=\frac{mx^2+4mx+14}{\left(x+2\right)^2}\) để hàm số nghịch biến trên \(\left(1;+\infty\right)\) thì y'<0 với mọi x thuộc khoảng đó suy ra
\(\begin{cases}m<0\\\Delta=4m^2-14m<0\end{cases}\)
giải ra ta đc đkcủa m
hoành độ giao điểm là nghiệm của pt
\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)
giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau
\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)
ta đc điều phải cm
hoành độ giao điểm là nghiệm của pt
\(x^3+3x^2+mx+1=1\Leftrightarrow x\left(x^2+3x+m\right)=0\)
\(x=0;x^2+3x+m=0\)(*)
để (C) cắt y=1 tại 3 điểm phân biệt thì pt (*) có 2 nghiệm phân biệt khác 0
\(\Delta=3^2-4m>0\) và \(0+m.0+m\ne0\Leftrightarrow m\ne0\)
từ pt (*) ta suy ra đc hoành độ của D, E là nghiệm của (*)
ta tính \(y'=3x^2+6x+m\)
vì tiếp tuyến tại Dvà E vuông góc
suy ra \(y'\left(x_D\right).y'\left(x_E\right)=-1\)
giải pt đối chiếu với đk suy ra đc đk của m
với \(m=0\) : PT \(\left(1\right)\Leftrightarrow\) \(-2x+1=0\) \(\Leftrightarrow x=\frac{1}{2}\in\left(0;1\right)\)
với \(m\ne0\) : PT \(\left(1\right)\) có đúng 1 nghiệm \(\in\left(0;1\right)\)
\(\Leftrightarrow f\left(0\right).f\left(1\right)<0\)
( để ý: \(\Delta'=\left(m+1\right)^2-m=\)\(m^2+m+1>0,\text{∀}x\in R\))
\(\Leftrightarrow m-2\left(m+1\right)+1<0\) \(\Leftrightarrow m>-1\)
vậy \(m>-2\) là kết quả cần tìm
với m=0m=0 : PT (1)⇔(1)⇔ −2x+1=0−2x+1=0 ⇔x=12∈(0;1)⇔x=12∈(0;1)
với m≠0m≠0 : PT (1)(1) có đúng 1 nghiệm ∈(0;1)∈(0;1)
⇔f(0).f(1)<0⇔f(0).f(1)<0
( để ý: Δ′=(m+1)2−m=Δ′=(m+1)2−m=m2+m+1>0,∀x∈Rm2+m+1>0,∀x∈R)
⇔m−2(m+1)+1<0⇔m−2(m+1)+1<0 ⇔m>−1⇔m>−1
vậy m>−2m>−2 là kết quả cần tìm