\(tan\left(\frac{\Pi}{3}-3x\right)+tan2x+tanx=\sqrt{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 2 2020

\(tana+tanb=\frac{sina.cosb+cosa.sinb}{cosa.cosb}=\frac{sin\left(a+b\right)}{cosa.cosb}\)

\(tana-tanb=\frac{sina.cosb-cosa.sinb}{cosa.cosb}=\frac{sin\left(a-b\right)}{cosa.cosb}\)

\(tan\left(\frac{\pi}{3}-3x\right)-tan\left(\frac{\pi}{3}\right)+tan2x+tanx=0\)

\(\Leftrightarrow\frac{-sin3x}{cos\left(\frac{\pi}{3}-3x\right).cos\left(\frac{\pi}{3}\right)}+\frac{sin3x}{cosx.cos2x}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cosx.cos2x=\frac{1}{2}cos\left(\frac{\pi}{3}-3x\right)\end{matrix}\right.\)

Pt dưới \(\Leftrightarrow cos3x+cosx=cos\left(\frac{\pi}{3}-3x\right)\)

\(\Leftrightarrow cos3x-cos\left(\frac{\pi}{3}-3x\right)+cosx=0\)

\(\Leftrightarrow-2sin\left(\frac{\pi}{6}\right).sin\left(3x-\frac{\pi}{6}\right)+cosx=0\)

\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=-cosx=sin\left(x-\frac{\pi}{2}\right)\)

NV
19 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{3}tan\left(\frac{\pi}{9}-2x\right)=-3\)

\(\Leftrightarrow tan\left(\frac{\pi}{9}-2x\right)=-\sqrt{3}\)

\(\Rightarrow\frac{\pi}{9}-2x=-\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{2\pi}{9}+\frac{k\pi}{2}\)

d/

\(\Leftrightarrow\left[{}\begin{matrix}tanx=5\\tan2x=tan4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\2x=4+k\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(5\right)+k\pi\\x=2+\frac{k\pi}{2}\end{matrix}\right.\)

NV
19 tháng 7 2020

a/

ĐKXĐ: ...

\(\Leftrightarrow tanx-8\sqrt{3}=3tanx-6\sqrt{3}\)

\(\Leftrightarrow2tanx=-2\sqrt{3}\)

\(\Rightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)

b/

\(\Leftrightarrow tan2x=-cot\left(\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{\pi}{2}+\frac{5\pi}{8}\right)\)

\(\Leftrightarrow tan2x=tan\left(\frac{9\pi}{8}\right)\)

\(\Rightarrow2x=\frac{9\pi}{8}+k\pi\Rightarrow x=\frac{9\pi}{16}+\frac{k\pi}{2}\)

NV
19 tháng 7 2020

c/

ĐKXĐ: ...

\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)

\(\Leftrightarrow5tan2x=-5\)

\(\Rightarrow tan2x=-1\)

\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)

\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

d/

ĐKXĐ: ...

\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)

\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)

\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
19 tháng 7 2020

a/

\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)

\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)

b/

\(tan\left(2x-15^0\right)=tanx\)

\(\Rightarrow2x-15^0=x+k180^0\)

\(\Rightarrow x=15^0+k180^0\)

16 tháng 7 2020

\(\frac{tanx-1}{tanx+1}+cot2x=0\\ \Leftrightarrow cot2x-\frac{1-tanx\cdot tan\frac{\pi}{4}}{tanx+tan\frac{\pi}{4}}=0\\ \Leftrightarrow cot2x-cot\left(x+\frac{\pi}{4}\right)=0\)

NV
16 tháng 7 2020

d/

ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}+cot2x=0\\3tanx-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}-\frac{tan^2x-1}{2tanx}=0\\tanx=\frac{\sqrt{3}}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(tanx-1\right)\left(\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}\right)=0\left(1\right)\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

Xét (1): \(\Leftrightarrow\left[{}\begin{matrix}tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}=0\left(2\right)\end{matrix}\right.\)

Xét (2)

\(\Leftrightarrow\left(tanx+1\right)^2-2tanx=0\)

\(\Leftrightarrow tan^2x+1=0\left(vn\right)\)

NV
20 tháng 7 2020

a/

\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{2\pi}{3}-3x\right)\)

\(\Rightarrow x+\frac{\pi}{3}=\frac{2\pi}{3}-3x+k\pi\)

\(\Rightarrow4x=\frac{\pi}{3}+k\pi\)

\(\Rightarrow x=\frac{\pi}{12}+\frac{k\pi}{4}\)

b/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{3}-\frac{3}{tanx}=0\)

\(\Leftrightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
18 tháng 10 2020

Câu 2 bạn coi lại đề

3.

\(1+2sinx.cosx-2cosx+\sqrt{2}sinx+2cosx\left(1-cosx\right)=0\)

\(\Leftrightarrow sin2x-\left(2cos^2x-1\right)+\sqrt{2}sinx=0\)

\(\Leftrightarrow sin2x-cos2x=-\sqrt{2}sinx\)

\(\Leftrightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=\sqrt{2}sin\left(-x\right)\)

\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=sin\left(-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-x+k2\pi\\2x-\frac{\pi}{4}=\pi+x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
18 tháng 10 2020

4.

Bạn coi lại đề, xuất hiện 2 số hạng \(cos4x\) ở vế trái nên chắc là bạn ghi nhầm

5.

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=2cos^2\left(\frac{\pi}{4}-x\right)-1\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=cos\left(\frac{\pi}{2}-2x\right)\)

\(\Leftrightarrow sinx.sin2x-cosx.sin^22x=sin2x\)

\(\Leftrightarrow sin2x\left(sinx-cosx.sin2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\Leftrightarrow x=...\\sinx-cosx.sin2x-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

\(\Leftrightarrow sinx-1-2sinx.cos^2x=0\)

\(\Leftrightarrow sinx-1-2sinx\left(1-sin^2x\right)=0\)

\(\Leftrightarrow2sin^3x-sinx-1=0\)

\(\Leftrightarrow\left(sinx-1\right)\left(2sin^2x+2sinx+1\right)=0\)

\(\Leftrightarrow...\)

19 tháng 9 2020

Bài 3:  Một số phương trình lượng giác thường gặp

NV
19 tháng 9 2020

a.

\(\Leftrightarrow2sin\frac{17\pi}{30}cos\left(3x-\frac{7\pi}{30}\right)=\sqrt{3}\)

\(\Leftrightarrow cos\left(3x-\frac{7\pi}{30}\right)=\frac{\sqrt{3}}{2sin\left(\frac{17\pi}{30}\right)}\)

Đặt \(\frac{\sqrt{3}}{2sin\left(\frac{17\pi}{30}\right)}=cosa\) với \(a\in\left(0;\pi\right)\)

\(\Rightarrow cos\left(3x-\frac{7\pi}{30}\right)=cosa\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{7\pi}{30}=a+k2\pi\\3x-\frac{7\pi}{30}=-a+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{90}+\frac{a}{3}+\frac{k2\pi}{3}\\x=\frac{7\pi}{30}-\frac{a}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)

Chắc bạn ghi sai đề, con số \(\frac{4\pi}{3}\) sẽ hợp lý hơn con số \(\frac{4\pi}{5}\) rất nhiều

NV
15 tháng 7 2020

c/ ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow tan^3x+1+tan^2x+4\sqrt{3}\left(1+tanx\right)=8+7tanx\)

\(\Leftrightarrow tan^2x\left(1+tanx\right)+\left(4\sqrt{3}-7\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left(tan^2x-7+4\sqrt{3}\right)\left(1+tanx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tan^2x=7-4\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=2-\sqrt{3}\\tanx=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=tan\left(-\frac{\pi}{4}\right)\\tanx=tan\left(\frac{\pi}{12}\right)\\tanx=tan\left(-\frac{\pi}{12}\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{12}+k\pi\\x=-\frac{\pi}{12}+k\pi\end{matrix}\right.\)

Bạn tự tìm x thuộc khoảng đã cho

NV
15 tháng 7 2020

b/

ĐKXĐ: \(cos2x\ne0\)

\(\Leftrightarrow tan^22x+1+tan^22x=7\)

\(\Leftrightarrow tan^22x=3\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=\sqrt{3}\\tan2x=-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tan2x=tan60^0\\tan2x=tan\left(-60^0\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=60^0+k180^0\\2x=-60^0+k180^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-30^0+k180^0\end{matrix}\right.\)

Bạn tự tìm nghiệm thuộc khoảng đã cho nhé