Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDB có
CA là trung tuyến
CG=2/3CA
=>G là trọng tâm
=>E là trung điểm của BC
b: Xét tứ giác DFCE có
DF//CE
DE//CF
=>DFCE là hình bình hành
=>DC cắt FE tại trung điểm của mỗi đường
=>M là trung điểm của BC và EF
c: G là trọng tâm của ΔDBC
M là trung điểm của DC
=>B,G,M thẳng hàng
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
vì H là trung điểm của BC
nên \(CH=\frac{1}{2}BC\Rightarrow2CH=BC\)
có EH = CE + CH
mà CE = BC + CH
nên CE = 2CH + CH = 3CH
suy ra \(\frac{1}{3}CE=CH\)
Xét tam giác AED có
EH là trung tuyến (HA = HD)
\(\frac{1}{3}CE=CH\)
nên C là trọng tâm của tam giác AED
do đo AM là trung tuyến của DE
suy ra M là trung điểm của DE
Xét tam giác HDC vuông tại H
có HM là trung tuyến của cạnh huyền
nên \(HM=MD=\frac{1}{2}DE\)
suy ra tam giác HMD cân tại M
nên \(\widehat{MHD}=\widehat{MDH}\left(\widehat{EDA}\right)\left(1\right)\)
Xét tam giác AED ta có
EH đồng thời là đường cao và đường trung tuyến
nên tam giác AED cân tai E
suy ra\(\widehat{EDA}=\widehat{EAD}\left(2\right)\)
từ (1) và (2) suy ra
\(\widehat{MHD}=\widehat{EAD}\)
mà hai góc này ở vị trí so le trong nên MH // HM
a. tam giác ABC cân tại A --> góc ABC= góc ACB
mà góc ABC = góc EBF (đối đỉnh)
---> góc ACB = góc EBF
Xét tam giác EBF và tam giác DCK
góc FEB= góc KDC= 90o
EB=DC (gt)
góc EBF =góc DCK
---->tam giác EBF = tam giác DCK(g.c.g)
b. có EF//DK ( do cùng vuông góc BC)
----> góc EFK = góc DKF ( so le trong)
Xét tam giác IEF và tam giác IDK
góc IEF= góc IDK=90o
EF=DK ( câu a)
góc EFI = góc DKI
---> tam giác IEF = tam giác IDK( g.c.g)
----> IF=IK
anh/chị tự kẻ hình nhé :v
a, t\g BAC vuông cân tại A (gt)
=> AC = CB (đn) và AC _|_ AB (đn) mà AD đối AC
=> AB _|_ AD
xét tam giác ACB và tam giác ADB có : AB chung
AC = AD (gt)
AB _|_ AC và AD => góc CAB = góc DAB = 90
=> tam giác ACB = tam giác ADB (2cgv)
=> BC = DB (đn)
=> tam giác BDC cân tại B (đn)
b, M là trung điểm của BC (gt) => CM = 1/2BC
N là trung điểm của BD (gt) => DN = 1/2DB
mà BC = DB (cmt)
=> CM = DN
xét tam giác CDM và tam giác DCN có : CD chung
góc MCA = góc ADN do tam giác ACB = tam giác ADB (câu a)
=> tam giác CDM và tam giác DCN (c - g - c)
=> CN = DM (đn)
Xét ΔAED và ΔACB có:
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\left(dd\right)\)
AD=AB(gt)
=>ΔAED=ΔACB(c.g.c)
=>\(\widehat{ADE}=\widehat{ABC}\). Mà hai góc này ở vị trí sole trong)
=>BC//DE
b)Xét ΔAMD và ΔANB có:
\(\widehat{ADM}=\widehat{ABN}\left(cmt\right)\)
AD=AB(gt)
\(\widehat{MAD}=\widehat{NAB}\left(dd\right)\)
=>ΔAMD=ΔANB(g.c.g)
=>AM=AN