K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

a) Ta có : \(5^2=3^2+4^2\) hay \(BC^2=AB^2+AC^2\)

áp dụng đ/l Pytago đảo ta có ABC là tam giác vuông tại A

b) \(AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)

\(BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}\) 

\(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=\frac{16}{5}\) 

Dễ dàng cm được HDAE là hình chữ nhật

=> HD // AC , HE // AB

Áp dụng đl Ta let : \(\frac{HD}{AC}=\frac{HB}{BC}\Rightarrow HD=\frac{AC.BH}{BC}=\frac{\frac{4.9}{5}}{5}=\frac{36}{5}\)

\(HE=\sqrt{AH^2-HD^2}=\frac{48}{25}\)

17 tháng 8 2016

a)

vì \(BM=CM\)

\(\Rightarrow AM\) Là đương trung tuyến của tam giác \(ABC\)

mà theo gt ta có : \(AB=AC\Rightarrow\Delta ABC\) cân

theo định lý : trong 1 tam giác cân đường trung tuyến đồng thời là đường trung trực

\(\Rightarrow AM\perp NP\)

b) vì \(\Delta ABC\) đều \(\Rightarrow AB=AC=BC\)  và \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

mà \(AP=PB;AN=NC;BM=MC\)

\(\Rightarrow AP=PB=BM=MC=AN=NC\)

xét \(\Delta PBM\)  và \(\Delta NCM\) có:

BM=MC ( gt)

PB=NC ( cmt)

\(\widehat{B}=\widehat{C}\left(=60^0\right)\)

\(\Rightarrow\Delta PBM=\Delta NCM\)  (C.G.C)

\(\Rightarrow PM=NM\) ( 2 cạnh tương ứng )

\(\Rightarrow\Delta MNP\) là tam giác cân tại M

17 tháng 8 2016

đề pài phần a) sai 

sao lai MA_|_ AP pải là  MA_|_NP chứ 

2 tháng 12 2021

Nối A với D và nối A với E 

Gọi I là giao của HD với AB; K là giao của HE với AC

Ta có

\(HD\perp AB;AC\perp AB\)=> HD //AC

\(HE\perp AC;AB\perp AC\) => HE // AB

=> AKHI là hình bình hành (tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Mà \(\widehat{BAC}=90^o\)

=> AKHI là hình chữ nhật (hbh có 1 góc vuông là HCN) \(\Rightarrow IH=KA;AI=HK\)

Xét tg vuông ADI và tg vuông EAK có

ID=IH=AK

AI=HK=EK

=> tg ADI = tg EAK (hai tg vuông có 2 cạnh góc vuông bàng nhau) \(\Rightarrow\widehat{DAI}=\widehat{AEK}\)

Xét tg vuông EAK có \(\widehat{AEK}+\widehat{EAK}=90^0\)

\(\Rightarrow\widehat{DAI}+\widehat{EAK}=90^o\)

\(\Rightarrow\widehat{DAE}=\widehat{DAI}+\widehat{EAK}+\widehat{BAC}=90^o+90^o=180^o\)

=> D, A, E thẳng hàng

Xét tg vuông ADI và tg vuông AHI có

AI chung; ID=IH

\(\Rightarrow\Delta ADI=\Delta AHI\Rightarrow AD=AH\) (hai tg vuông có hai cạnh góc vuông = nhau)

Xét tg vuông BDI và tg vuông BHI có

BI chung; ID=IH 

\(\Rightarrow\Delta BDI=\Delta BHI\Rightarrow BD=BH\)(hai tg vuông có hai cạnh góc vuông = nhau)

Xét tg ADB và tg AHB có

AD=AH; BD=BH (cmt)

AB chung 

=> \(\Rightarrow\Delta ABD=\Delta AHB\left(c.c.c\right)\Rightarrow\widehat{ADB}=\widehat{AHB}=90^o\)

C/m tương tự ta cũng có \(\Delta AEC=\Delta AHC\Rightarrow\widehat{AEC}=\widehat{AHC}=90^o\)

Xét tg BDEC có

\(BD\perp DE;CE\perp DE\) => BD // CE => BDEC là hình thang

Mà \(\widehat{ADB}=90^o\)

=> BDEC là hình thang vuông

\(\Rightarrow S_{BDEC}=\frac{\left(BD+CE\right).DE}{2}\)

Ta có

 \(\Delta ADB=\Delta AHB\left(cmt\right)\Rightarrow BD=BH;AD=AH\)

\(\Delta AEC=\Delta AHC\Rightarrow CE=CH;AE=AH\)

\(\Rightarrow AD=AH=AE\Rightarrow DE=AD+AE=2.AH\)

\(\Rightarrow S_{BDEC}=\frac{\left(BD+CE\right).DE}{2}=\frac{\left(BH+CH\right).DE}{2}=\frac{BC.2.AH}{2}=BC.AH\)

\(S_{\Delta ABC}=\frac{BC.AH}{2}=\frac{S_{BDEC}}{2}\Rightarrow S_{BDCE}=2S_{\Delta ABC}\)

\(S_{BDEC}\) lớn nhất khi \(S_{\Delta ABC}\) lớn nhất

Ta có

\(S_{\Delta ABC}=\frac{AB.AC}{2}\) => \(S_{\Delta ABC}\) lớn nhất khi AB.AC lớn nhất

Theo bất đẳng thức cauchy ta có

\(AB^2+AC^2\ge2.AB.AC\Leftrightarrow AB.AC\le\frac{AB^2+AC^2}{2}\) Dấu bằng xảy ra khi AB=AC

Vậy để \(S_{BDEC}\) lớn nhất thì \(\Delta ABC\) phải là tam giác vuông cân

22 tháng 6 2016

Bạn để đúng lớp thì mình mới biết mà làm cho dễ hiểu chứ lolang

22 tháng 6 2016

a)  \(AB^2+AC^2=BC^2\left(3^2+4^2=5^2\right)\)nên ABC Vuông tại A

b)\(tínhchấtpg:\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{AB+BC}=\frac{AC}{AB+BC}=\frac{4}{3+5}=\frac{1}{2}\)

=>AE=AB/2=3/2  ;EC=BC/2=5/2

+ Tam giac ABE có: tanAEB= AB/AE=2

=> góc AEB=63'26'

=> góc BEC=180-AEB=116'34'

c) không có diều gs như vậy.