K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2019

a) Ta có: góc FAB + góc BAC = 90 độ
góc EAC + góc BAC = 90 độ
=> Góc FAB = góc EAC
AF=AC; AB=AE
=> Tam giác AFB = tam giác ACE
=> FB=EC

b) Lấy K sao cho M là trung điểm của AK thì ta có ACKB là hình bình hành nên góc ACB =180* - góc BAC. Ta cũng tính dc góc FAE= 180* - góc BAC ( tổng của BAC với 2 lần góc CAE, mà góc CAE=90* -góc BAC). Thêm với AC=AF , CK=AE (=AB) nên tam giác ACK = tam giác FAE nên AK=EF mà AK=2AM nên EF=2AM

c) Gọi H là giao của AM và EF. Tam giác ACK = tam giác FAE nên góc CAK = góc AFE, mà góc CAK phụ với góc MAF nên góc AFE cũng phụ góc MAF. Xét trong tam giác AHF có góc F và góc A phụ nhau nên tam giác AHF vuông tại H suy ra AM vuông góc với EF.

9 tháng 1 2016

gianroiHic, vừa đọc xong đề bài đã buồn ngủ rồi!

9 tháng 1 2016

=66

Bài 3:

Do a và b đều không chia hết cho 3 nhưng khi chia cho 3 thì có cùng số dư nên\(\left[{}\begin{matrix}\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\\\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\end{matrix}\right.\)

TH1:\(\left\{{}\begin{matrix}a=3n+1\\b=3m+1\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+1\right)\left(3m+1\right)-1\)

\(\Rightarrow ab-1=9nm+3m+3n+1-1=9nm+3m+3n⋮3\) nên là bội của 3 (đpcm)

TH2:\(\left\{{}\begin{matrix}a=3n+2\\b=3m+2\end{matrix}\right.\)

\(\Rightarrow ab-1=\left(3n+2\right)\left(3m+2\right)-1\)

\(\Rightarrow ab-1=9nm+6m+6n+4-1=9nm+6m+6n+3⋮3\) nên là bội của 3 (đpcm)

Vậy ....

Bài 2:

\(B=\frac{1}{2010.2009}-\frac{1}{2009.2008}-\frac{1}{2008.2007}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow B=\frac{1}{2010.2009}-\left(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

Đặt A=\(\frac{1}{2009.2008}+\frac{1}{2008.2007}+...+\frac{1}{3.2}+\frac{1}{2.1}\)

\(\Rightarrow A=\frac{2009-2008}{2009.2008}+\frac{2008-2007}{2008.2007}+...+\frac{3-2}{3.2}+\frac{2-1}{2.1}\)

\(\Rightarrow A=\frac{2-1}{2.1}+\frac{3-2}{3.2}+...+\frac{2008-2007}{2008.2007}+\frac{2009-2008}{2009.2008}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2008}-\frac{1}{2009}\)

\(\Rightarrow A=1-\frac{1}{2009}\)

\(\Rightarrow B=\frac{1}{2010.2009}-A=\frac{1}{2010.2009}-\left(1-\frac{1}{2009}\right)\)

\(\Rightarrow B=\frac{1}{2010.2009}+\frac{1}{2009}-1=\frac{2011}{2010.2009}-1\)

9 tháng 5 2018

Hỏi đáp Toán

a) \(BC.AH=AB.AC=6.8=48cm^2\) (bằng 2 lần diện tích ABC).

b) HAB và HAC là 2 tam giác vuông có \(\stackrel\frown{HBA}=\widehat{HAC}\) (cùng phụ với \(\widehat{BCA}\)) nên HAB đồng dạng với HAC. Từ đó \(\dfrac{HB}{AH}=\dfrac{AH}{HC}\Rightarrow HB.HC=AH^2\) (đây là hệ thức lượng quen thuộc trong tam giác vuông: đường cao thuộc cạnh huyền bằng trung bình nhân của hai cạnh góc vuông)

c) Áp dụng Pitago ta có \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10cm\). Từ đó \(BE=BCV-CE=10-4=6cm=BA\).

Ta có \(BE^2=BA^2=BH.BC\) (chứ không phải là \(BH.CH\) nhé).

d) Không biết là bạn cần tính gì? Nếu là cần tính diện tích của tam giác CED thì có thể làm như sau:

Áp dụng tính chất phân giác có \(\dfrac{CD}{AD}=\dfrac{BC}{BA}=\dfrac{10}{6}=\dfrac{5}{3}\Rightarrow\dfrac{CD}{CA}=\dfrac{CD}{CD+AD}=\dfrac{5}{3+5}=\dfrac{5}{8}\)

\(\dfrac{dt_{CED}}{dt_{CAB}}=\dfrac{CE}{CB}.\dfrac{CD}{CA}=\dfrac{4}{10}.\dfrac{5}{8}=\dfrac{1}{4}\), do đó \(dt_{CED}=\dfrac{1}{4}dt_{ABC}=\dfrac{1}{4}.\dfrac{1}{2}.6.8=6cm^2\)

12 tháng 8 2019

Tại sao (diện tích tam giác ced / diện tích tam giác cab) =ce/cb*cd/ca

a: \(\text{Δ}ABC\sim\text{Δ}HBA;\text{Δ}ABC\sim\text{Δ}HCA\)

b: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

CH=BC-BH=25-9=16(cm)

a: Xét tứ giác OBDC có

\(\widehat{OBD}+\widehat{OCD}=180^0\)

Do đó: OBDC là tứ giác nội tiếp

b: Xét ΔEBA và ΔECB có

\(\widehat{E}\) chung

\(\widehat{EAB}=\widehat{EBC}\)

Do đó: ΔEBA\(\sim\)ΔECB

Suy ra: EB/EC=EA/EB

hay \(EB^2=EC\cdot EA\)

15 tháng 5 2017

b/

Xét \(\Delta ABD\)\(\Delta EBC\) có:

\(\widehat{A}=\widehat{E}=90^o\) ( vì \(\Delta ABC\) vuông tại A và \(CE\perp BD\) tại E)

\(\widehat{ABD}=\widehat{EBC}\) ( vì BD là tia phân giác của \(\widehat{ABC}\) )

\(\Rightarrow\Delta ABD~\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{BD}{BC}=\dfrac{AD}{EC}\) ( 2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow BD.EC=BC.AD\)

c/ Vì \(\Delta ABD~\Delta EBC\left(cmt\right)\)

\(\Rightarrow\widehat{ADB}=\widehat{ECB}\)

\(\widehat{ADB}=\widehat{EDC}\) ( 2 góc đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{ECB}\)

Xét \(\Delta ECD\)\(\Delta EBC\) có:

\(\widehat{E}\) là góc chung

\(\widehat{EDC}=\widehat{ECB}\left(cmt\right)\)

\(\Rightarrow\Delta ECD~\Delta EBC\left(g.g\right)\)

\(\Rightarrow\dfrac{EC}{EB}=\dfrac{CD}{BC}\) ( 2 cặp cạnh tương ứng tỉ lệ)

d/ Xét \(\Delta EBC\) vuông tại E, đường cao EH ứng với cạnh BC

Áp dụng hệ thức lượng trong tam giác vuông ta có:

\(EC^2=CH.CB\) (3)

\(\Delta ECD~\Delta EBC\left(cmt\right)\)

\(\Rightarrow\dfrac{ED}{EC}=\dfrac{EC}{EB}\) ( 2 cặp cạnh tương ứng tỉ lệ)

\(\Rightarrow EC.EC=ED.EB\)

\(\Leftrightarrow EC^2=ED.EB\left(4\right)\)

Từ (3) và (4) \(\Rightarrow CH.CB=ED.EB\)

31 tháng 5 2022

đỉnh thế