Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điểm M và N cách đều A,B do đó thuộc đường trung trực của AB, và đối xưng nhau qua trung điểm O của AB và OM=ON=16cm
Đường trung trực của AB là đường cực đại, các điểm trên đường này dao động với phương trình
\(x=2A\cos\left(\omega t-\frac{x}{\lambda}2\pi\right)\) x là khoảng cách từ điểm đó đến 2 nguồn
Xét từ O đến M
x sẽ nằm trong khoảng từ 12cm(AB/2) đến 20cm(pytago)
Cùng pha với nguồn
\(x=k\lambda\)
Các x thỏa mãn là 12.5; 15; 17.5 và 20
Cả hai bên sẽ có 8 (tính cả M và N)
Gọi hình chiếu của điểm M trên AB là N, trung điểm của AB là O, đặt ON = x \(\Rightarrow\) \(AM=\sqrt{4+\left(4-x\right)^2}\)\(,BM=\sqrt{4+\left(4+x\right)^2}\)
\(\vartheta BM=\frac{2\pi BM}{\lambda}\)
\(\vartheta AM=\frac{2\pi AM}{\lambda}\)
\(\Rightarrow\frac{2\pi}{\lambda}\left(MB-MA\right)=\left(2k+1\right)\lambda\pi\)
Min khi k = 0 \(\Leftrightarrow\sqrt{4+\left(4+x\right)^2}-\sqrt{4+\left(4-x\right)^2}\)\(=1\Rightarrow x\approx0,56\left(cm\right)\)
chọn đáp án A
A,B là 2 nguồn cùng pha nên đường trung trực của AB dao động cực đại.
Giữa M và đường trung trực của AB có 3 dãy dực đại khác => M nằm trên dãy cực đại k = 4
\(d_2-d_1=(k+\frac{\triangle\varphi}{2\pi})\lambda = (4+0)\lambda \Rightarrow \lambda = \frac{d_2-d_1}{4}=\frac{21-19}{4}=0.5cm \Rightarrow v = f.\lambda = 80.0,5=40cm/s.\)
Đáp án B
Ta có M và N là hai điểm trên mặt nước và cùng cách đều A,B những đoạn là 16 cm nên M và N đều thuộc đường trung trực của AB và M N đối xứng nhau qua AB
như vậy trên đoạn OM có 3 điểm dao động cùng pha với nguồn
Do N đối xứng với M qua O nên trên đoạn ON cũng có 3 điểm dao động cùng pha với nguồn
Do trên đoạn ON và OM trùng nhau vân tại O nên trên đoạn MN có 5 điểm dao động cùng pha với nguồn