K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2018

Ta có 12 + 22 + 32 + …102 = 385

Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32

Do đó ta tính được A = 32 + 62 + 92 + …+302  = 3465

3 tháng 9 2017

Bài 1 : a, Ta có : (-1)3 . (-1)5 . (-1)7  . (-1)9 . (-1)11 . (-1)13

= (-1)(-1).(-1).(-1).(-1).(-1) 

= (-1)6

= 1

b, (1000 - 13) . (1000 - 23) . (1000 - 33) . ... . (1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... (1000 - 103).......(1000 - 503)

= (1000 - 13) . (1000 - 23) . (1000 - 33) .... 0 ........(1000 - 503)

= 0 

Bài 2 : 

Đặt A = 1+ 2+ 3+ ... + 10= 385

=> 22(1+ 2+ 3+ ... + 102) = 22.385

=> 22 + 42 + 62 + ..... + 202 = 4.385

=> 22 + 42 + 62 + ..... + 202 = 1540

Vậy 22 + 42 + 62 + ..... + 202 = 1540

4 tháng 1 2018

bài 3:

a) 2S=2+22+23+24+...+251

    2S-S=251-1

mà 251-1<251

Suy ra:s<251

31 tháng 10 2018

Ta có 1^2+ 2^2 + 3^2 + 4^2 + ...... + 10^2 = 385

S = 2^2 . ( 1^2 + 2^2 + 3^2 + 4^2 + ..... + 10^2 ) = 2^2 . 385 

S = 2^2  + 4^2 + 6^2 + 8^2 + ..... + 20^2 = 1540 

Tính P tương tự nhưng nâng lên 3^2

5 tháng 8 2016

\(S=\left(2.1\right)^2+\left(2.2\right)^2+\left(2.3\right)^2+....+\left(2.10\right)^2\)

\(\Rightarrow S=2^2.1^2+2^2.2^2+....+2^2.10^2\)

\(\Rightarrow S=2^2\left(1^2+2^3+3^2+.....+10^2\right)\)

Áp dụng giả thiết từ đề

\(\Rightarrow S=2^2.385\)

\(\Rightarrow S=4.384=1540\)

5 tháng 8 2016

\(S=2^2+4^2+6^2+...+20^2\)

    \(=1^2.4+2^2.4+3^2.4+...+10^2.4\)

    \(=4.\left(1^2+2^2+3^2+...+10^2\right)\)

    \(=4.385=1540\)

17 tháng 8 2015

S = 2^2.1^2 + 2^2.2^2 + ... +2^2.10^2

S = 2^2 ( 1^2 + 2^2 + 3^2 + .. + 10^2)

S = 4.385

S = 1540 

6 tháng 9 2020

S = 22 + 42 + 62 +...+ 202

S=(2.1)2+(2.2)2+(2.3)2+.......+(2.10)2

S=22.12+22.22+22.32+....+22.102

S=22.(12+22+32+....+102)=4.385=1540

16 tháng 10 2022

a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)

=>4^x=4^8

=>x=8

b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

=>2^x=2^11

=>x=11

c: =>1/6*6^x+6^x*36=6^15(1+6^3)

=>6^x=6*6^15

=>x=16

d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)

=>x=9

29 tháng 9 2016

\(S=\left(0,25\right)^2+\left(0,5\right)^2+...+\left(2,5\right)^2\)

\(\Rightarrow\frac{n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2,5\left(2,5+1\right)\left(2,5.2+1\right)}{6}\)

\(\Rightarrow S=8,75\)

 

29 tháng 9 2016

huhu

4 tháng 2 2016

22=4=4.12

42=16=4.22

62=36=4.32

................

202=400=4.102

Nên : S=22+42+62+.....+202=4.(12+22+32+.....+102)

=4.385=1540

Vậy S=1540

4 tháng 2 2016

1540 cá chắc trong violympic

11 tháng 9 2019

\(a,\frac{(-10)^5}{3\cdot(-6)^4}=\frac{(-2\cdot5)^5}{3\cdot(-2\cdot3)^4}=\frac{(-2)^5\cdot5^5}{3\cdot(-2)^4\cdot3^4}=\frac{(-2)^5\cdot5^5}{(-2)^4\cdot3^5}=-2\cdot\frac{5^5}{3^5}=\frac{-6250}{243}\)

\(b,\frac{2^{15}\cdot9^4}{6^6\cdot8^3}=\frac{\left[2^3\right]^5\cdot\left[3^2\right]^4}{\left[3\cdot2\right]^6\cdot\left[2^3\right]^3}=\frac{2^{15}\cdot3^8}{3^6\cdot2^6\cdot2^9}=\frac{2^{15}\cdot3^8}{3^6\cdot2^{15}}=\frac{3^8}{3^6}=3^2=9\)

\(c,\left[1+\frac{2}{3}-\frac{1}{4}\right]\cdot\left[\frac{4}{5}-\frac{3}{4}\right]^2\)

\(=\left[\frac{12}{12}+\frac{8}{12}-\frac{3}{12}\right]\cdot\left[\frac{16}{20}-\frac{15}{20}\right]^2\)

\(=\frac{17}{12}\cdot\left[\frac{1}{20}\right]^2=\frac{17}{12}\cdot\frac{1^2}{20^2}=\frac{17}{12}\cdot\frac{1}{400}=\frac{17}{4800}\)

\(d,2^3+3\cdot\left[\frac{1}{2}\right]^0+\left[(-2)^2:\frac{1}{2}\right]\)

\(=8+3\cdot\frac{1^0}{2^0}+\left[4:\frac{1}{2}\right]\)

\(=8+3\cdot1+8=8+3+8=19\)