Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(\forall x1,x2\in\left(1,+\infty\right),x1\ne x2\)
\(f\left(x1\right)-f\left(x2\right)=\dfrac{1}{1-x1}-\dfrac{1}{1-x2}=\dfrac{1-x2-1+x1}{\left(1-x1\right)\left(1-x2\right)}=\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}\)
\(\dfrac{f\left(x1\right)-f\left(x2\right)}{x1-x2}=\dfrac{\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}}{x1-x2}=\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}\)
vì \(x1,x2\in\left(1;+\infty\right)\)nên \(\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x1< 0\\1-x2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}>0\)
Vậy hàm số đồng biến trên \(\left(1;+\infty\right)\)
a) Xét f(u) = \(\dfrac{u^p}{p}+\dfrac{v^q}{q}-uv,u\ge0\)
( Xem v > 0 vì v = 0 : BĐT luôn đúng )
f '(u) = up-1 - v = 0 \(\Leftrightarrow\) up-1 = v \(\Leftrightarrow\) u = \(v^{\dfrac{q}{p}}\)
Vẽ bảng biến thiên ( tự vẽ )
Vậy \(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)
b)* Nếu \(\int\limits^b_a\left|f\left(x\right)\right|^pdx=0\) hay \(\int\limits^b_a\left|g\left(x\right)\right|^qdx=0\)thì \(f\equiv0\)hay \(g\equiv0\) BĐT luôn đúng
Xét \(\int\limits^b_a\left|f\left(x\right)\right|^pdx>0\) và \(\int\limits^b_a\left|g\left(x\right)\right|^qdx>0\)
Áp dụng BĐT câu (a) :
Với \(\left\{{}\begin{matrix}u=\dfrac{\left|f\left(x\right)\right|}{\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}}>0\\v=\dfrac{\left|g\left(x\right)\right|}{\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}}>0\end{matrix}\right.\)
\(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\left(1\right)\)
Lấy tích phân từ a \(\rightarrow\) b 2 vế BĐT (1) ta được :
\(\int\limits^b_auvdx\le\dfrac{1}{p}+\dfrac{1}{q}=1\)
Vậy : \(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)^p\right|dx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)^q\right|dx\right)^{\dfrac{1}{q}}\)
\(\Rightarrow\)(Đpcm )
điều kiện : \(\dfrac{\pi}{2}\) < α < \(\pi\) (1)
\(\sin^2\dfrac{\alpha}{2}+\cos^2\dfrac{\alpha}{2}=1\)
⇔ \(\left(\dfrac{2}{\sqrt{5}}\right)^2+\cos^2\dfrac{\alpha}{2}=1\)
⇒ \(\cos\dfrac{\alpha}{2}=\pm\dfrac{1}{\sqrt{5}}\)
Do (1) nên ta có \(\dfrac{\pi}{4}< \dfrac{\alpha}{2}< \dfrac{\pi}{2}\): \(\cos\dfrac{\alpha}{2}>0\) ⇒ \(\cos\dfrac{\alpha}{2}=\dfrac{1}{\sqrt{5}}\) ⇒ \(\tan\dfrac{\alpha}{2}=\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}}=\dfrac{\dfrac{2}{\sqrt{5}}}{\dfrac{1}{\sqrt{5}}}=2\)
Khi đó ta có:
A = \(\dfrac{\tan\dfrac{\alpha}{2}-\tan\dfrac{\pi}{4}}{1+\tan\dfrac{\alpha}{2}.\tan\dfrac{\pi}{4}}\) = \(\dfrac{2-1}{1+2.1}\) =\(\dfrac{1}{3}\)
VẬY..............................
Lấy x1;x2<1 sao cho x1<x2
\(A=\dfrac{f\left(x1\right)-f\left(x2\right)}{x_1-x_2}=\left(\dfrac{x_1-2}{x_1+1}-\dfrac{x_2-2}{x_2+1}\right):\left(x_1-x_2\right)\)
\(=\dfrac{x_1x_2+x_1-2x_2-2-x_1x_2-x_2+2x_1+2}{\left(x_1+1\right)\left(x_2+1\right)}\cdot\dfrac{1}{x_1-x_2}\)
\(=\dfrac{3x_1-3x_2}{\left(x_1+1\right)\left(x_2+1\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{3}{\left(x_1+1\right)\left(x_2+1\right)}\)
x1<-1; x2<-1 nên x1+1<0; x2+1<0
=>(x1+1)(x2+1)>0
=>A>0
=>Hàm số đồng biến khi x<-1
Khi x1>-1; x2>-1 thì x1+1>0; x2+1>0
=>(x1+1)(x2+1)>0
=>A>0
=>Hàm số đồng biến khi x>-1
=>Hàm số đồng biến khi x<>-1
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)