Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\\\sqrt{z-2}-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-1=0\\\sqrt{y-1}-1=0\Leftrightarrow\\\sqrt{z-2}-1=0\end{cases}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
vậy \(S=x+y=1+2=3\)
Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)
Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)
\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)
Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)
\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)
\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)
\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)
Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1
Ta co: \(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(\Rightarrow\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}=\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}=y+z\)
Thê vào ta được
\(A=x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)=2\left(xy+yz+zx\right)=2\)
ta có :
\(\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}=\frac{\left(xy+yz+xz+y^2\right)\left(xy+yz+xz+z^2\right)}{\left(xy+yz+xz+x^2\right)}=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}=\left(y+z\right)^2\)
tương tự ta sẽ có :
\(A=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)=2\left(xy+yz+xz\right)=2\)
Okey
\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(z+x\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự thì ta có:
\(P=2\left(xy+yz+zx\right)=2\)
Vậy P=2
Điều kiện xác định : \(x\ge0\),\(y\ge1\),\(z\ge2\)
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Mà \(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2\ge0\)
Đẳng thức xảy ra khi \(\left(\sqrt{x}-1\right)^2=\left(\sqrt{y-1}-1\right)^2=\left(\sqrt{z-2}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
\(\hept{\begin{cases}x,y,z>0\\x+y+z=xyz\end{cases}}\)
\(\Rightarrow\frac{1}{xy} +\frac{1}{yz}+\frac{1}{zx}=1\)
Có : \(\frac{1}{\sqrt{1+x^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+x^2}}\le\frac{1}{2.\sqrt{\frac{x^2y}{xyz}}}\le\frac{1}{2}\)
\(\frac{1}{\sqrt{1+y^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+y^2}}\le\frac{1}{2\sqrt{\frac{y^2z}{xyz}}}\le\frac{1}{2}\)
\(\frac{1}{\sqrt{1+z^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+z^2}}\le\frac{1}{2\sqrt{\frac{z^2x}{xyz}}}\le\frac{1}{2}\)
\(\Rightarrow\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Vậy P max = 3/2
đưa về HĐT ấy dạng này làm nhiều trên web r`