Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a)\(2\&\sqrt{5}\)
\(2=\sqrt{4}\)
=> \(2< \sqrt{5}\)
b)\(5\&\sqrt{23}\)
\(5=\sqrt{25}\)
=> \(5>\sqrt{23}\)
c) \(\sqrt{23}+\sqrt{13}\&\sqrt{83}\)
\(\left(\sqrt{23}+\sqrt{13}\right)^2=36+2\sqrt{229}\)
\(\left(\sqrt{83}\right)^2=83\)
\(\Rightarrow36+2\sqrt{299}< 83\)
=> \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2. a) \(\sqrt{x}=5;x\ge0\)
=> x = 25
b) \(3\sqrt{x}=6;x\ge0\)
=> x = 4
c) trùng
d) \(3-\sqrt{3+1}=1\)
\(3-\sqrt{3+1}=3-2=1\)
1)
a)\(2=\sqrt{4}< \sqrt{5}\)
b) \(5=\sqrt{25}>\sqrt{23}\)
c) \(\sqrt{83}>\sqrt{81}=9\)
\(\left\{{}\begin{matrix}\sqrt{23}< \sqrt{25}=5\\\sqrt{13}< \sqrt{16}=4\end{matrix}\right.\)
\(\sqrt{23}+\sqrt{13}< 4+5=9\)
Vậy \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)
2) Ta có:
\(\sqrt{x}=5\Rightarrow x=25\)
\(3\sqrt{x}=6\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(3-\sqrt{3+1}=1\)
Nên:
\(3-2=1\)(luôn đúng)
Bài1:
Ta có:
a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)
b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)
c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)
Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)
Bài 2:
Không có đề bài à bạn?
Bài 3:
a)\(\sqrt{x}-1=4\)
\(\Rightarrow\sqrt{x}=5\)
\(\Rightarrow x=\sqrt{25}\)
\(\Rightarrow x=5\)
b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)
Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)
\(\Rightarrow\left(x-1\right)^2=16\)
\(\Rightarrow\left(x-1\right)^2=4^2\)
\(\Rightarrow x-1=4\)
\(\Rightarrow x=5\)
\(a,\sqrt{x}+\sqrt{x-5}\le\sqrt{5}\)
ĐKXĐ: \(\sqrt{x}\ge0;\sqrt{x-5}\ge0=>x\ge5\)
\(=>\left(\sqrt{x}+\sqrt{x-5}\right)^2\le\left(\sqrt{5}\right)^2\)
\(=>\left(\sqrt{x}\right)^2+2.\sqrt{x}.\sqrt{x-5}+\left(\sqrt{x-5}\right)^2\le5\)
\(=>x+2.\sqrt{x.\left(x-5\right)}+x-5\le5\)
\(=>2x+2\sqrt{x^2-5x}-5\le5=>2x+2\sqrt{x^2-5x}-10\le0\)
\(=>2\left(x+\sqrt{x^2-5x}\right)\le10=>x+\sqrt{x^2-5x}\le5\)
\(=>\sqrt{x^2-5x}\le5-x=>\left(\sqrt{x^2-5x}\right)^2\le\left(5-x\right)^2\)
\(=>x^2-5x\le25-10x+x^2=>25-10x+x^2-x^2+5x\ge0\)
\(=>25-5x\ge0=>5x\le25=>x\le5\)
Mà theo ĐKXĐ: \(x\ge5\) nên x chỉ có thể bằng 5
Vậy x=5
\(b,\frac{x+3}{x+2}<\frac{x+4}{x+5}=>\frac{\left(x+3\right)\left(x+5\right)}{\left(x+2\right)\left(x+5\right)}<\frac{\left(x+4\right)\left(x+2\right)}{\left(x+5\right)\left(x+2\right)}\) (ĐKXĐ: \(x\notin\left\{-5;-2\right\}\))
\(=>\left(x+3\right)\left(x+5\right)<\left(x+4\right)\left(x+2\right)=>x^2+8x+15\)\(<\)\(x^2+6x\)\(+8\)
\(=>x^2+6x+8-x^2-8x-15>0=>-2x-7>0=>-2x>7=>x>-\frac{7}{2}\)
\(c,3^{x^2-x-6}<1=3^0=>x^2-x-6<0\)
\(=>x^2+2x-3x-6<0=>x\left(x+2\right)-3\left(x+2\right)<0=>\left(x+2\right)\left(x-3\right)<0\)
Vì x+2 > x-3
=>x+2 > 0 và x-3 < 0
=>x > -2 và x < 3
=>-2 < x < 3
Vậy.............
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
Thêm các bước giải chi tiết nx ạ , mik cảm ơn
x = 5 +3
x= 8
x = 64