Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DDK : \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)
\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)
\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)
\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)
\(\Leftrightarrow11x^2-10x-1=0\)
\(\Leftrightarrow11x^2-11x+x-1=0\)
\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)
Giải nốt nha .
5x-2>2(x+3)\(\Leftrightarrow\)5x-2>2x+6
\(\Leftrightarrow\) 5x-2x>6+2
\(\Leftrightarrow\)3x>8
\(\Leftrightarrow\)x>\(\dfrac{8}{3}\)
0 8/3
Chúc bn học tốt❤
ta có đề bài <=>
\(\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+5\right)^2}=8\)
<=> \(\left|x-3\right|+\left|x+5\right|=8\)
<=>\(\left|3-x\right|+\left|x+5\right|=8\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|3-x\right|+\left|x+5\right|>=\left|3-x+x+5\right|=8\)
dấu = xảy ra <=> \(\left(3-x\right)\left(x+5\right)>=0\)
đến đây bạn tự giaỉ dấu = nhé
\(ĐKXĐ:x\ne-1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5x+5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x-2-5x-5=15\)
\(\Leftrightarrow-4x=22\Leftrightarrow x=\frac{-11}{2}\)
Vậy \(S=\left\{\frac{-11}{2}\right\}\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(x-2\right)}\left(ĐKXĐ:x\ne-1;x\ne2\right)\)
\(\Leftrightarrow\frac{1\left(x-2\right)-5\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{x-2-5x-5}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow\frac{-4x-7}{\left(x+1\right)\left(x-2\right)}=\frac{15}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow-4x-7=15\)
\(\Leftrightarrow-4x=22\)
\(\Leftrightarrow x=22:\left(-4\right)\)
\(\Leftrightarrow x=\frac{-22}{4}=\frac{-11}{2}\)
Vậy tập nghiệm \(S=\left\{\frac{-11}{2}\right\}\)
\(\sqrt{x+5}=1+\sqrt{x}\)
ĐKXĐ : \(x\ge0\)
\(pt\Leftrightarrow x+5=\left(1+\sqrt{x}\right)^2\)
\(\Leftrightarrow x+5=x+2\sqrt{x}+1\)
\(\Leftrightarrow x+5-x-2\sqrt{x}-1=0\)
\(\Leftrightarrow-2\sqrt{x}+4=0\)
\(\Leftrightarrow\sqrt{x}=2\Rightarrow x=4\)(TMĐKXĐ)