Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu b đk x>= -1/4
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
\(x+\sqrt{\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2}=2\)
\(\left(\sqrt{x+\dfrac{1}{4}}+\dfrac{1}{2}\right)^2=2\)
\(x+\dfrac{1}{4}=\left(\sqrt{2}-\dfrac{1}{2}\right)^2\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
\(x=\left(\sqrt{2}-\dfrac{1}{2}-\dfrac{1}{2}\right)\left(\sqrt{2}-\dfrac{1}{2}+\dfrac{1}{2}\right)\)
\(x=\sqrt{2}\left(\sqrt{2}-1\right)=2-\sqrt{2}\)
a: \(=3xy\cdot\dfrac{\sqrt{2}}{\sqrt{xy}}=3\sqrt{2}\sqrt{xy}\)
b: \(=x\cdot\dfrac{\sqrt{6}}{\sqrt{x}}+\dfrac{\sqrt{6}}{3}\sqrt{x}\)
\(=\sqrt{6}\sqrt{x}+\dfrac{\sqrt{6}}{3}\sqrt{x}=\dfrac{4\sqrt{6}}{3}\cdot\sqrt{x}\)
c: \(=\sqrt{xy}+x\cdot\dfrac{\sqrt{y}}{\sqrt{x}}-y\cdot\dfrac{\sqrt{x}}{\sqrt{y}}\)
\(=\sqrt{xy}+\sqrt{xy}-\sqrt{xy}=\sqrt{xy}\)
Đặt \(N=\sqrt{x-1+2\sqrt{x-2}}+\sqrt{x-1-2\sqrt{x-2}}\)
\(\Rightarrow N^2=x-1+2\sqrt{x-2}+x-1-2\sqrt{x-2}+2\sqrt{\left(x-1+2\sqrt{x-2}\right)\left(x-1-2\sqrt{x-2}\right)}\)
\(\Leftrightarrow N^2=2x-2+2\sqrt{\left(x-1\right)^2-\left(2\sqrt{x-2}\right)^2}\)
\(\Leftrightarrow N^2=2x-2+2\sqrt{x^2-2x+1-4\left(x-2\right)}\)
\(\Leftrightarrow N^2=2x-2+2\sqrt{x^2-2x+1-4x+8}\)
\(\Leftrightarrow N^2=2x-2+2\sqrt{x^2-6x+9}\)
\(\Leftrightarrow N^2=2x-2+2\sqrt{\left(x-3\right)^2}\)
\(\Leftrightarrow N^2=2x-2+2\left|x-3\right|\)
* Với \(x\ge3\)thì \(N^2=2x-2+2\left(x-3\right)=4x-8=4\left(x-2\right)\Rightarrow N=2\sqrt{x-2}\)
* Với \(2\le x\le4\)thì \(N^2=2x-2-2\left(x-3\right)=4\Rightarrow N=\sqrt{4}=2\)
(Bạn xem thử coi đúng hông nha, và 1 cái k nhá!)
1) ĐK: \(x\ge-2012\)
Đặt \(\sqrt{x+2012}=t\left(t\ge0\right)\Rightarrow x=t^2-2012\)
Ta có hệ \(\hept{\begin{cases}x^2+t=2012\\-x+t^2=2012\end{cases}}\)
\(\Rightarrow x^2+t-t^2+x=0\Rightarrow\left(x+t\right)\left(x-t+1\right)=0\)
Với \(x+t=0\Leftrightarrow\sqrt{x+2012}=x\Rightarrow x^2-x-2012=0\Rightarrow x=\frac{\sqrt{8049}+1}{2}\)
Với \(x-t+1=0\Leftrightarrow\sqrt{x+2012}=x+1\Rightarrow x^2+x-2011=0\Rightarrow x=\frac{\sqrt{8045}-1}{2}\)
2) ĐK \(\orbr{\begin{cases}x< -\frac{1}{3}\\x>1\end{cases}}\)
Đặt \(\sqrt{\frac{3x+1}{x-1}}=t\), phương trình trở thành \(4t+\frac{1}{t}=4\Rightarrow\frac{4t^2-4t+1}{t}=0\Rightarrow t=\frac{1}{2}\)
Khi đó ta có \(\sqrt{\frac{3x+1}{x-1}}=\frac{1}{2}\Rightarrow\frac{3x+1}{x-1}=\frac{1}{4}\Rightarrow11x+5=0\)
\(\Rightarrow x=-\frac{5}{11}\left(tm\right)\)
c) TH1: \(x\le-1\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)-4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2-4t+3=0\Rightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)
Với \(t=1\Rightarrow\left(x-3\right)\left(x+1\right)=1\Rightarrow x^2-2x-4=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{5}\left(l\right)\\x=1-\sqrt{5}\left(tm\right)\end{cases}}\)
Với \(t=3\Rightarrow\left(x-3\right)\left(x+1\right)=9\Rightarrow x^2-2x-12=0\Rightarrow\orbr{\begin{cases}x=1+\sqrt{13}\left(l\right)\\x=1-\sqrt{13}\left(tm\right)\end{cases}}\)
Với \(x>3\), phương trình trở thành \(\left(x-3\right)\left(x+1\right)+4\sqrt{\left(x-3\right)\left(x+1\right)}+3=0\)
Đặt \(\sqrt{\left(x-3\right)\left(x+1\right)}=t\left(t\ge0\right)\) thì \(t^2+4t+3=0\Rightarrow\orbr{\begin{cases}t=-1\\t=-3\end{cases}\left(l\right)}\)
Vậy pt có 2 nghiệm \(x=1-\sqrt{5}\) hoặc \(x=1-\sqrt{13}\)
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|=\left[{}\begin{matrix}\sqrt{x-1}+1+\sqrt{x-1}-1\left(x\ge2\right)\\\sqrt{x-1}+1+1-\sqrt{x-1}\left(1\le x< 2\right)\end{matrix}\right.=\left[{}\begin{matrix}2\sqrt{x-1}\left(x\ge2\right)\\2\left(1\le x< 2\right)\end{matrix}\right.\)
Rút gọn