Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
<=> \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)
Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)
...
a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)
Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)
...
Ta có : \(3x^2+5x+14=5\left(x+1\right)\sqrt{4x-1}\)
\(\Leftrightarrow\left(3x^2+5x+14\right)^2=\left[5\left(x+1\right)\sqrt{4x-1}\right]^2\)
\(\Leftrightarrow9x^4+25x^2+196+2\left(3x^2.5x+5x.14+3x^2.14\right)=25.\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+25x^2+196+2\left(15x^3+70x+42x^2\right)=25\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+25x^2+196+30x^3+140x+84x^2=25\left(x+1\right)^2\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=25\left(x^2+2x+1\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=\left(25x^2+50x+25\right)\left(4x-1\right)\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+200x^2+100x-25x^2-50x-25\)
\(\Leftrightarrow9x^4+109x^2+196+30x^3+140x=100x^3+175x^2+50x-25\)
Đến đây chuyển vế sang giải nhé mệt quá
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)
Ta xét 3 trường hợp :
1. Với \(x< 1\) , pt trên trở thành : \(1-x+2-x=3\Leftrightarrow2x=0\Leftrightarrow x=0\)(nhận)
2. Với \(1\le x\le2\), pt trên trở thành : \(x-1+2-x=3\Leftrightarrow1=3\)(vô lý - loại)
3. Với \(x>2\) , pt trên trở thành : \(x-1+x-2=3\Leftrightarrow2x=6\Leftrightarrow x=3\)(nhận)
Vậy tập nghiệm của phương trình : \(S=\left\{0;3\right\}\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-1+x-2=3\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=2\)
\(\sqrt{4x^2-4x+1}=\sqrt{\left(2x-1\right)}=\left|2x-1\right|=-\left(2x-1\right)\Rightarrow2x-1\le0\Leftrightarrow x\le\frac{1}{2}\)\(\sqrt{4x^2-1}-2\sqrt{2x+1}=0\Leftrightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\2x-1=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
a, 3x + 6x - 5 = 17x
9x - 5 = 17x
9x - 17x = 5
- 8x = 5
x = -5/8
b, 8(4x + 2 ) = 20x + 11x
32x + 16 = 31x
32x - 31x = -16
x = -16
c, \(\sqrt{x}^2\) - 2x + 1 = 0
\(\left(\sqrt{x}\right)^2\) - 2x + 1 = 0
\(\left(\sqrt{x}+1\right)^2\) = 0
\(\sqrt{x+1}\) = 0
x + 1 = 0
x = -1
a) \(\sqrt{x^2+4x+5}=1\)
\(\Leftrightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)
\(\Rightarrow x^2+4x+5=1\)
\(\Rightarrow x^2+4x+4=0\)
\(\Rightarrow\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
b) \(\sqrt{x^2+4x+4}=2x-1\)
\(\Leftrightarrow\left(\sqrt{x^2+4x+4}\right)^2=\left(2x-1\right)^2\)
\(\Leftrightarrow x^2+4x+4=\left(2x-1\right)^2\)
\(\Leftrightarrow\left(x+2\right)^2=\left(2x-1\right)^2\)
\(\Rightarrow x+2=2x-1\)
\(\Rightarrow-x=-3\)
\(\Rightarrow x=3\)
\(\sqrt{x^2+4x+5}=1\Leftrightarrow x^2+4x+5=1\Leftrightarrow x^2+4x+4=0\Leftrightarrow x=-2\)
\(\sqrt{x^2+4x+5}=1\)
\(\Rightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)
\(\Rightarrow x^2+4x+5=1\)
\(\Rightarrow x.x+2x+2x+4=0\left(\text{cùng bớt đi 1}\right)\)
\(\Rightarrow x\left(2+x\right)+2\left(x+2\right)=0\)
\(\Rightarrow\left(2+x\right)\left(2+x\right)=0\)
\(\Rightarrow\left(2+x\right)^2=0^2\)
\(\Rightarrow2+x=0\)
\(\Rightarrow x=0-2\)
\(\Rightarrow x=-2\)
\(\sqrt{x^2+4x+5}=1\)
\(\Rightarrow\sqrt{x^2+4x+5}=\sqrt{1}\)
\(\Rightarrow x^2+4x+5=1\)