\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\)

Giúp mình đang cần gấp

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

\(\sqrt{x^2+48}=4x-3+\sqrt{x^2+35}\)

\(\Leftrightarrow\sqrt{x^2+48}-7=4x-4+\sqrt{x^2+35}-6\)

\(\Leftrightarrow\frac{x^2+48-49}{\sqrt{x^2+48}+7}=4\left(x-1\right)+\frac{x^2+35-36}{\sqrt{x^2+35}+6}\)

\(\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+48}+7}-4\left(x-1\right)-\frac{x^2-1}{\sqrt{x^2+35}+6}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+48}+7}-4-\frac{x+1}{\sqrt{x^2+35}+6}\right)=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

13 tháng 9 2020

Tìm miền xác định phải không 

a) 

\(1-\sqrt{2x-x^2}\) 

a xác định \(\Leftrightarrow2x-x^2\ge0\) 

\(0\le x\le2\) 

b) 

\(\sqrt{-4x^2+4x-1}\) 

b xác định 

\(\Leftrightarrow-4x^2+4x-1\ge0\) 

\(-\left(4x^2-4x+1\right)\ge0\) 

\(4x^2-4x+1\le0\) 

\(\left(2x-1\right)^2\le0\) 

2x - 1 = 0 

x = 1/2 

c) 

\(\frac{x}{\sqrt{5x^2-3}}\) 

c xác định 

\(\Leftrightarrow5x^2-3>0\) 

\(5x^2>3\) 

\(x^2>\frac{3}{5}\) 

\(\orbr{\begin{cases}x< -\frac{\sqrt{15}}{5}\\x>\frac{\sqrt{15}}{5}\end{cases}}\) 

d) 

d xác định 

\(\Leftrightarrow\sqrt{x-\sqrt{2x-1}}>0\) 

\(x-\sqrt{2x-1}>0\) 

\(x>\sqrt{2x-1}\) 

\(\hept{\begin{cases}2x-1\ge0\\x^2>2x-1\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x^2-2x+1>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\\left(x-1\right)^2>0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x-1\ne0\end{cases}}\) 

\(\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne1\end{cases}}\) 

e) 

e xác định 

\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\) 

\(3x+2< 0\) ( vì \(-2x^2\le0\forall x\) ) 

\(x< -\frac{2}{3}\) 

f) 

f xác định 

\(\Leftrightarrow x^2+x-2>0\) 

\(\orbr{\begin{cases}x< -2\\x>1\end{cases}}\)

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

2 tháng 7 2017

a) chắc là nhóm lại thui để sau mk làm:v

b)\(\sqrt{\frac{x+7}{x+1}}+8=2x^2+\sqrt{2x-1}\)

Đk: tự lm nhé :v

\(pt\Leftrightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}-\left(\sqrt{2x-1}-\sqrt{3}\right)=2x^2-8\)

\(\Leftrightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2x-1-3}{\sqrt{2x-1}+\sqrt{3}}=2\left(x^2-4\right)\)

\(\Leftrightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}=2\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow\frac{\frac{-2\left(x-2\right)}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2\left(x-2\right)}{\sqrt{2x-1}+\sqrt{3}}-2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)\right)=0\)

Dễ thấy: \(\frac{\frac{-2}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}-\frac{2}{\sqrt{2x-1}+\sqrt{3}}-2\left(x+2\right)< 0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

3 tháng 7 2017

ban tra loi nhanh giup mk nhe

27 tháng 8 2021

\(a,\sqrt{\frac{x-2}{25}}+2\sqrt{4x-8}=2\sqrt{x-2}+11\)

\(ĐKXĐ:x\ge2\)

\(\frac{1}{5}\sqrt{x-2}+4\sqrt{x-2}-2\sqrt{x-2}=11\)

\(\frac{11}{5}\sqrt{x-2}=11\)

\(\sqrt{x-2}=5\)

\(x-2=25\)

\(x=27\left(TM\right)\)

\(b,\sqrt{x^2-2x+1}=3x-2\)

\(ĐKXĐ:x\ge\frac{3}{2}\)

\(\sqrt{\left(x-1\right)^2}=3x-2\)

\(\left|x-1\right|=3x-2\)

\(x-1=3x-2\)

\(x=\frac{1}{2}\left(KTM\right)\)vậy pt vô nghiệm

27 tháng 8 2021

b, đk  : x >= 2/3

|x - 1| = 3x - 2

=> x - 1 = 3x - 2 hoặc x - 1 = 2 - 3x

=> 2x = 1 hoặc 4x = 3

=> x = 1/2 (ktm) hoặc x = 3/4 (tm)

3 tháng 7 2017

1/ \(x-6\sqrt{x}-8=\left(\sqrt{x}-3+\sqrt{17}\right)\left(\sqrt{x}-3-\sqrt{17}\right)\)

2/ Bài này làm gì còn phân tích được nữa.

10 tháng 7 2020

Trả lời 

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow\left|x+1\right|+\left|x+2\right|=3\)

\(\Leftrightarrow x+1+x+2=3\)

\(\Leftrightarrow2x+3=3\)

\(\Leftrightarrow2x=0\)

\(\Leftrightarrow x=0\)

Vậy \(x=0\)

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2}+\sqrt{\left(x+2\right)^2}=3\)

\(\Leftrightarrow x+1+x+2=3\Leftrightarrow2x+3=3\)

\(\Leftrightarrow2x=0\Leftrightarrow x=0\)