\(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)= 1 

Tính \(\sqrt{x^2-6x+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

\(\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-\left(x^2-6x+10\right)\)

\(\Rightarrow\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right).1=3\)

 

5 tháng 10 2016

(\(\sqrt{x^2-6x+13}\) - \(\sqrt{x^2-6x+10}\))(\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\)) = x2 - 6x + 13 - x2 + 6x - 10 = 3

=>

\(\sqrt{x^2-6x+13}\) + \(\sqrt{x^2-6x+10}\) = 3

17 tháng 7 2017

Ta có :

\(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)

=\(\sqrt{x^2-2.3.x+3^2+4}-\sqrt{x^2-2.3.x+3^2+1}\)

=\(\sqrt{\left(x-3\right)^2+2^2}-\sqrt{\left(x-3\right)^2+1^2}\)

23 tháng 8 2017

Ta có :

\(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)

\(=\sqrt{x^2-6x+9+4}+\sqrt{x^2-6x+9+1}\)

\(=\sqrt{\left(x-3\right)^2+2^2}+\sqrt{\left(x-3\right)^2+1}\)

13 tháng 11 2018

Ta có: \(A\cdot1=\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

=> A = 3

8 tháng 6 2017

2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)

\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)

9 tháng 6 2017

Ta có:  a+ b= \(\frac{-1+\sqrt{2}}{2}\)    +    \(\frac{-1-\sqrt{2}}{2}\)=  -1

a*b  =  \(\frac{-1+\sqrt{2}}{2}\)*   \(\frac{-1-\sqrt{2}}{2}\)=   -\(\frac{1}{4}\)

a2  +   b2  =  (a+ b)2  -  2ab  = 1+ \(\frac{1}{2}\)=  \(\frac{3}{2}\)

a4  +  b4  =    (a2  +   b2 )2  -  2a2b2  =  \(\frac{9}{4}\)-   \(\frac{1}{8}\)=  \(\frac{17}{8}\)

a3  +   b3  =  ( a + b)3  -  3ab(a + b )  = -1-\(\frac{3}{4}\)\(\frac{-7}{4}\)

vay a7  +  b7  = (a3 +  b3 )(a4 + b4 ) -a3b3(a+b)=  \(\frac{-7}{4}\)*   \(\frac{17}{8}\)-  (-\(\frac{1}{64}\))  * (-1)  = \(\frac{-239}{64}\)

1 tháng 10 2016

a/ Ta có \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)

\(\Leftrightarrow\left(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\right)=4A\)

\(\Leftrightarrow4A=\left(x^2-6x+22\right)-\left(x^2-6x+10\right)\)

\(\Leftrightarrow4A=12\Leftrightarrow A=3\)

b/ Tương tự.