Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
Co : X=\(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)
\(\Leftrightarrow x^3=3-2\sqrt{2}+3+2\sqrt{2}\)+\(3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}x\)
\(\Leftrightarrow x^3=6+3x\)
CMTT : \(y^3=34+3y\)\(\)
\(\Leftrightarrow x^3+y^3-3\left(x+y\right)+2014=6+3x+34+3y-3x-3y+2014\)\(=2054\)
a) \(\sqrt{2}\cdot x-\sqrt{50}=0< =>\sqrt{2}\cdot x=\sqrt{50}\)
<=> x= 5
b) \(\sqrt{3}\cdot x+\sqrt{3}=\sqrt{12}+\sqrt{27}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot\sqrt{4}+\sqrt{3}\cdot\sqrt{9}\)
<=> \(\sqrt{3}\cdot\left(x+1\right)=\sqrt{3}\cdot5< =>x+1=5\)
<=> x=4
c) \(\sqrt{3}\cdot x^2-\sqrt{12}=0\\ < =>x^2=\sqrt{4}=2;-2\\ < =>x=\sqrt{2};-\sqrt{2}\)
d) \(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\\ < =>x^2=\sqrt{100}=10;-10\\ < =>x=\sqrt{10};-\sqrt{10}\)
Cho P=x3+y3−3(x+y)+2017. Tính P khi x=3√3+2√2+3√3−2√2và yy=3√17+12√2+3√17−12√2
cứ lập phương cả x và y là được rồi cộng tổng lại được 2040
\(ĐKXĐ:x^2-12\ge0\Rightarrow x^2\ge12\Rightarrow x\ge-2\sqrt{3}\)
\(\sqrt{x^2-12}=2\)
\(\Leftrightarrow x^2-12=4\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
cảm ơn bạn