K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Xét \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1+x+1-x+x^2}{2}=\frac{x^2+2}{2}\)

      \(\Rightarrow\sqrt{\frac{1}{1+x^3}}\ge\frac{2}{x^2+2}\)

Xét \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(b+c\right)^3}{a^3}}}\)  \(=\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\)

       \(\Rightarrow\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\ge\frac{2}{\frac{\left(b+c\right)^2}{a^2}+2}\) 

         \(=\frac{2a^2}{b^2+c^2+2bc+2a^2}\ge\frac{2a^2}{2b^2+2c^2+2a^2}\) (1)  (cái này bạn tự quy đồng sau đó áp dụng cosi cho 2bc)

Tương tự  \(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{2b^2}{2a^2+2b^2+2c^2}\)  (2)     \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{2c^2}{2a^2+2b^2+2c^2}\)  (3)

 Cộng các vế của (1),(2) và (3) ta có đpcm

                                                                                   

18 tháng 10 2020

Xét bất đẳng thức phụ\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)(*)

Thật vậy: (*)\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\)

Áp dụng kết hợp bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức AM - GM, ta được: \(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^4}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)^6}{4}}=\left(b+c\right)^3\)

Vậy bất đẳng thức phụ trên là đúng. Tương tự rồi cộng lại ta được \(VT\ge1\)

Đẳng thức xảy ra khi 3 biến bằng nhau hoặc có 2 biến dần về 0

AH
Akai Haruma
Giáo viên
3 tháng 11 2019

Lời giải:
Áp dụng BĐT AM-GM:

\(a^3+1=(a+1)(a^2-a+1)\leq \left(\frac{a+1+a^2-a+1}{2}\right)^2=\left(\frac{a^2+2}{2}\right)^2\)

\(b^3+1\leq \left(\frac{b^2+2}{2}\right)^2\)

\(\Rightarrow \sqrt{(a^3+1)(b^3+1)}\leq \frac{(a^2+2)(b^2+2)}{4}\)

\(\Rightarrow \frac{a^2}{\sqrt{(a^3+1)(b^3+1)}}\geq \frac{4a^2}{(a^2+2)(b^2+2)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \underbrace{\frac{4a^2}{(a^2+2)(b^2+2)}+\frac{4b^2}{(b^2+2)(c^2+2)}+\frac{4c^2}{(c^2+2)(a^2+2)}}_{M}\)

Ta cần CM \(M\geq \frac{4}{3}\)

\(\Leftrightarrow \frac{a^2(c^2+2)+b^2(a^2+2)+c^2(b^2+2)}{(a^2+2)(b^2+2)(c^2+2)}\geq \frac{1}{3}\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (a^2+2)(b^2+2)(c^2+2)\)

\(\Leftrightarrow 3(a^2b^2+b^2c^2+c^2a^2)+6(a^2+b^2+c^2)\geq (abc)^2+2(a^2b^2+b^2c^2+c^2a^2)+4(a^2+b^2+c^2)+8\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2(a^2+b^2+c^2)\geq 72\)

Điều này luôn đúng do theo BĐT AM-GM thì: \(\left\{\begin{matrix} a^2b^2+b^2c^2+c^2a^2\geq 3\sqrt[3]{(abc)^4}=3\sqrt[3]{8^4}=48\\ 2(a^2+b^2+c^2)\geq 6\sqrt[3]{(abc)^2}=6\sqrt[3]{8^2}=24\end{matrix}\right.\)

Do đó ta có đpcm

Dấu "=" xảy ra khi $a=b=c=2$

19 tháng 11 2019

Đặt \(x=\frac{b+c}{a}>0\) .Ta cần CM:

\(\sqrt{1+x^3}\le1+\frac{1}{2}x^2\Leftrightarrow\left(x^2+2\right)^2\ge4\left(x^3+1\right)\)

\(\Leftrightarrow x^4-4x^3+4x^2\ge0\Leftrightarrow x^2\left(x-2\right)^2\ge0\)

BĐT cuối đúng => đpcm 

ĐT xảy ra<=> \(b+c=2a\)

19 tháng 11 2019

Làm tiếp:) 

Ta có: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2};\)

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Cộng theo vế 3 BĐT trên ta đc đpcm .

ĐT xảy ra<=> a=b=c

4 tháng 8 2017

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) 

5 tháng 12 2018

SCó :\(A=\) \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\)=\(\sqrt{\frac{1}{1+\left(\frac{b+c}{a}\right)^3}}\) ( chia tử mẫu cho \(a^3\) )     =\(\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^3}}\) 
Lại có\(\sqrt{1+\left(\frac{b+c}{a}\right)^3}\)  =\(\sqrt{\left(1+\frac{b+c}{a}\right)\left[1-\frac{b+c}{a}+\left(\frac{b+c}{a}\right)^2\right]}\)( hằng đẳng thức )
                                                  \(\le\)\(\frac{2+\left(\frac{b+c}{a}\right)^2}{2}\)( áp dụng \(\sqrt{xy}\le\frac{x+y}{2}\))
Nên \(\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^3}}\ge\frac{2}{2+\left(\frac{b+c}{a}\right)^2}\)\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2b^2+2c^2}\)( vì \(\left(b+c\right)^2\le2b^2+2c^2\)) . TỪ ĐÓ SUY RA :
\(A=\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)
Cmtt có : \(B=\sqrt[]{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)
        
                 \(C=\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)
VẬY \(A+B+C\ge1\)

 

29 tháng 11 2018

Giải hộ tớ với

25 tháng 5 2020

Sử dụng BĐT AM-GM ta có:

\(\sqrt{1+x^3}=\sqrt{\left(x+1\right)\left(x^2-x+1\right)}\le\frac{x^2-x+1+x+1}{2}=\frac{x^2+2}{2}\)

Đẳng thức xảy ra <=> \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Ta có \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\frac{1}{\sqrt{1+\left(\frac{b+c}{a}\right)^2}}\ge\frac{2}{\left(\frac{b+c}{a}\right)^2+2}\)

\(=\frac{2a^2}{2a^2+\left(b+c\right)^2}\ge\frac{2a^2}{2a^2+2\left(b^2+c^2\right)}=\frac{a^2}{a^2+b^2+c^2}\)

Tương tự có \(\hept{\begin{cases}\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\\\sqrt{\frac{c^3}{c^3+\left(a+c\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\end{cases}}\)

Cộng 3 vế BĐT trên ta được đpcm

Dấu "=" <=> a=b=c

24 tháng 11 2017

chia mỗi phân thức cho tử đi bạn nhé