K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2017

Vì a > 0 và b > 0 ta đc:

                           Đặt \(A=\sqrt{a+b}\)

                                  \(A^2=a+b\)

                                   \(B=\sqrt{a}+\sqrt{b}\)

                                   \(B^2=a+b+2\sqrt{ab}\)

             Vì \(a+b< a+b+2\sqrt{ab}\)

                   \(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(đpcm\right)\)

1 tháng 7 2017

Vì a và b đều >0. Ta được:

Đặt A = \(\sqrt{a+b}\)

A2 = \(a+b\)

B = \(\sqrt{a}+\sqrt{b}\)

B2 = \(a+b+2\sqrt{ab}\)

Vì a + b < a + b + \(2\sqrt{ab}\)

Nên \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\) (đpcm)

11 tháng 7 2016

Ta sẽ chứng minh bằng biến đổi tương đương như sau :

Ta có : \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(1\right)\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\)

\(\Leftrightarrow2\sqrt{ab}>0\Leftrightarrow\sqrt{ab}>0\) (luôn đúng)

Vì bất đẳng thức cuối luôn đúng nên bất đẳng thức (1) được chứng minh.

4 tháng 6 2018

Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y;\sqrt[4]{c}=z\)

Cần chứng minh

\(\sqrt[4]{a}+\sqrt[4]{b}>\sqrt[4]{c}=\sqrt[4]{a+b}\)

\(\Rightarrow\left(x^3+y^3\right)^4>\left(x^4+y^4\right)^3\)

Rôi phân phối ra là thấy

4 tháng 6 2018

E ko hiểu

18 tháng 9 2020

1) Vì \(a,b>0\)\(\Rightarrow\)\(\sqrt{ab}>0\)

                          \(\Leftrightarrow\)\(2\sqrt{ab}>0\)

                          \(\Leftrightarrow\)\(a+b+2\sqrt{ab}>a+b\)

                          \(\Leftrightarrow\)\(\left(\sqrt{a}+\sqrt{b}\right)^2>a+b\)

                          \(\Leftrightarrow\)\(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

Vậy \(\sqrt{a}+\sqrt{b}>\sqrt{a+b}\)

18 tháng 9 2020

1. Ta có: \(\left(\sqrt{a+b}\right)^2=a+b\)

              \(\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)

Vì \(a>0\)\(b>0\)\(\Rightarrow\sqrt{ab}>0\)\(\Rightarrow2\sqrt{ab}>0\)

\(\Rightarrow a+b< a+2\sqrt{ab}+b\)

\(\Rightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\)

mà \(\hept{\begin{cases}\sqrt{a+b}>0\\\sqrt{a}+\sqrt{b}>0\end{cases}}\)\(\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)( đpcm )

\(\sqrt{a+b}^2=a+b\)

\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+2\sqrt{ab}+b>a+b\)

\(\Rightarrow\sqrt{a+b}^2< \left(\sqrt{a}+\sqrt{b}\right)^2\Rightarrow\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)

=>đpcm

24 tháng 12 2018

\(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}=\frac{\sqrt{a^3}+\sqrt{b^3}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)

                                                   \(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\)

                                                   \(=a-\sqrt{ab}+b-\sqrt{ab}\)

                                                    \(=\left(\sqrt{a}-\sqrt{b}\right)^2\)

9 tháng 6 2017

a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)

<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)

<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)

<=>\(a+b\ge2\sqrt{ab}\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)