Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{7x+7}+\sqrt{7x-6}=t\ge0\)
\(bpt\Leftrightarrow t+t^2< 182\Leftrightarrow-14< t< 13\Leftrightarrow t< 13\Leftrightarrow\sqrt{7x+7}+\sqrt{7x-6}< 13\left(đk:x\ge\dfrac{6}{7}\right)\Leftrightarrow14x+1+2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 169\Leftrightarrow2\sqrt{\left(7x+7\right)\left(7x-6\right)}< 168-14x\Leftrightarrow\left\{{}\begin{matrix}\left(7x+7\right)\left(7x-6\right)\ge0\\168-14x\ge0\\4\left(7x+7\right)\left(7x-6\right)< \left(168-14x\right)^2\end{matrix}\right.\)
\(giảibpt\Rightarrowđáp\) \(số\)
ĐK: \(1\le x\le6\)
Đặt \(t=\sqrt{x-1}+\sqrt{6-x}\left(t\ge0\right)\)
\(t^2=5+2\sqrt{-x^2+7x-6}\)\(\Leftrightarrow t^2-5=2\sqrt{-x^2+7x-6}\)
pt\(\Leftrightarrow\frac{t^2-5}{2}+t=5\)\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-5\end{matrix}\right.\)=>t=3(tm)\(\Rightarrow\sqrt{x-1}+\sqrt{6-x}=3\)\(\Leftrightarrow x=2\left(tm\right)\)
KL : Vậy S={2}.
Một cách làm khác
\(\sqrt{x-1}+\sqrt{6-x}+\sqrt{\left(x-1\right)\left(6-x\right)}=5\)
Điều kiện ( 1<=x<=6)
Đặt \(\sqrt{x-1}=a;\sqrt{6-x}=b\) ta có hệ phương trình sau
\(a+b+ab=5\) <=> \(a+b=5-ab\)
\(a^2+b^2=5\) <=> \(\left(a+b\right)^2=5+2ab\)
<=> \(\left(5-ab\right)^2=5+2ab\) <=> \(25-10ab+a^2b^2=5+2ab\)
<=> \(a^2b^2-12ab+20=0\) <=> \(\left(ab-2\right)\left(ab-10\right)=0\)
<=>\(ab=2\) hoặc \(ab=10\)
*ab=2 <=> \(\sqrt{-x^2+7x-6}=2\) <=> \(-x^2+7x-6=4\)
<=> \(x^2-7x+10=0\)
<=>\(\left(x-2\right)\left(x-5\right)=0\) <=> x=2 hoặc x=5 ( thỏa mãn)
*ab=10 <=>\(\sqrt{-x^2+7x-6}=10\) <=> \(-x^2+7x-106=0\)
<=> \(x^2-7x+106=0\)
Phương trình này vô nghiệm
Vậy \(S=\left\{2;5\right\}\)
a) \(\sqrt{5x+3}=3x-7\)\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=\left(3x-7\right)^2\\3x-7\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+3=9x^2-42x+49\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}9x^2-47x+46=0\\x\ge\dfrac{7}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{47+\sqrt{553}}{18}\\x=\dfrac{47-\sqrt{553}}{18}\end{matrix}\right.\\x\ge\dfrac{7}{3}\end{matrix}\right.\)\(\Leftrightarrow\dfrac{47+\sqrt{553}}{18}\).
b) \(\sqrt{3x^2-2x-1}=3x+1\)\(\Leftrightarrow\left\{{}\begin{matrix}3x^2-2x-1=\left(3x+1\right)^2\\3x+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x^2+8x+2=0\\x\ge\dfrac{-1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-1\end{matrix}\right.\\x\ge-\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow x=-\dfrac{1}{3}\).
a) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+29-1\right)\left(x^2-11x+29+1\right)=1680\\ \)
Đặt \(x^2-11x+29=t\), ta đc \(\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1=1680\Leftrightarrow t^2=1681\Leftrightarrow t=\pm41\)
Với \(t=41\Leftrightarrow x^2-11x+28=40\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)
Với \(t=-41\Leftrightarrow x^2-11x+30=-40\)(vô no)
Vậy.....
c) \(x^4-7x^3+14x^2-7x+1=0\\ \Leftrightarrow x^2-7x+14-\frac{7}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+14=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
Ta đc \(t^2-2-7t+14=0\Leftrightarrow t^2-7t+12=0\)
\(\Rightarrow\left[{}\begin{matrix}t=4\\t=3\end{matrix}\right.\)
B tự giải tiếp nha
\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\) ( ĐK : \(\frac{6}{7}\le x\le\frac{181}{14}\))
\(\Leftrightarrow\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{\left(7x+7\right)\left(7x-6\right)}=-\left(7x+7\right)-\left(7x-6\right)+182\)
Đặt \(\left\{{}\begin{matrix}\sqrt{7x+7}=a\left(a\ge0\right)\\\sqrt{7x-6}=b\left(b\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow a+b+2ab=-a^2-b^2+182\)
\(\Leftrightarrow\left(a+b\right)^2+\left(a+b\right)-182=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=13\left(N\right)\\a+b=-14\left(L\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{7x+7}+\sqrt{7x-6}=13\)
\(\Leftrightarrow\sqrt{49x^2+7x-42}=84-7x\)
\(\Leftrightarrow49x^2+7x-42=49x^2-1176x+7056\)
\(\Leftrightarrow1183x=7098\)
\(\Leftrightarrow x=6\left(TM\right)\)
Vậy S={6}
Hay quá!