K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

\(\sqrt{51-7\sqrt{8}}=\sqrt{7^2-7.2\sqrt{2}+\left(\sqrt{2}\right)^2}=\sqrt{\left(7-\sqrt{2}\right)^2}=7-\sqrt{2}\)

(vì\(7=\sqrt{49}>\sqrt{2}\Rightarrow7-\sqrt{2}>0\))

28 tháng 10 2016

pt sao có 1 vé vậy bạn

20 tháng 4 2017

a) \(\orbr{\orbr{\begin{cases}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{cases}}}\)             b)\(\orbr{\begin{cases}x\ge1\\x\le-3\end{cases}}\)

20 tháng 4 2017

c)\(\orbr{\begin{cases}\hept{\begin{cases}x\ge\sqrt{2}\\x\ne\sqrt{3}\end{cases}}\\\hept{\begin{cases}x\le-\sqrt{2}\\x\ne-\sqrt{3}\end{cases}}\end{cases}}\)

7 tháng 11 2016

Đặt \(AB=a,AC=b\). Ta có: \(BC^2=a^2+b^2.\)
Áp dụng hệ thức lượng trong tam giác vuông :
\(BD.BC=AB^2\Rightarrow BD=\frac{AB^2}{BC}=\frac{a^2}{\sqrt{a^2+b^2}}\).
Tương tự \(CD=\frac{b^2}{\sqrt{a^2+b^2}}\).
Có \(MB.AB=BD^2\Rightarrow MB=\frac{BD^2}{AB}=\frac{a^4}{\left(a^2+b^2\right).a}=\frac{a^3}{a^2+b^2}\).
Tương tự ta tính được \(CN=\frac{b^3}{a^2+b^2}\).
Vậy \(\sqrt[3]{BM^2}+\sqrt[3]{CN^2}=\sqrt[3]{\left(\frac{a^3}{a^2+b^2}\right)^2}+\sqrt[3]{\left(\frac{b^3}{a^2+b^2}\right)^2}\)
                                                     \(=a^2.\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}+b^2.\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}\)
                                                     \(=\left(a^2+b^2\right).\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}\)

                                                        \(=\sqrt[3]{a^2+b^2}=\sqrt[3]{BC^2}\) ( Đpcm)

5 tháng 11 2016

bạn vẽ tam giác vuông nha

A/ sử dụng địn lí ta két trong tam giác nha

A B C D M N

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

2 tháng 1 2016

\(\Leftrightarrow P\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\ge\left(x+y+z\right)^2\left(1\right)\)

Áp dụng Bu-nhi :

\(\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)^2\le\left(xy+yz+xz\right)\left(x+y+z\right)\)

\(\Leftrightarrow x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\le24\)
\(\Leftrightarrow P\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\le24P\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\)\(\left(x+y+z\right)^2\le24P\)

\(\Rightarrow12^2\le24P\)

\(\Rightarrow P\ge6\)
ĐẾN ĐÂY BẠN TỰ GIẢI DẤU \(=\) XẢY RA LÚC NÀO NHÉ

1 tháng 1 2016

Áp dụng Bu-nhi :

\(12^2<\left(x+y+z\right)^2=\left(\frac{\sqrt{x}}{\sqrt{\sqrt{y}}}.\sqrt{x}.\sqrt{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{\sqrt{z}}}.\sqrt{y}.\sqrt{\sqrt{z}}+\frac{\sqrt{z}}{\sqrt{\sqrt{x}}}.\sqrt{z}.\sqrt{\sqrt{x}}\right)^2\)
\(\le\left(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\right)\left(x\sqrt{y}+y\sqrt{z}+z\sqrt{x}\right)\)